M Akram Ullah , Cristián J. Monaco , David J. Marshall
{"title":"一个能量难题:热带高岸腹足动物在逐渐暴露于空气中的能量状态和耐热性之间的矛盾关系。","authors":"M Akram Ullah , Cristián J. Monaco , David J. Marshall","doi":"10.1016/j.cbpa.2025.111917","DOIUrl":null,"url":null,"abstract":"<div><div>High-shore intertidal gastropods experience energy-demanding thermo-dehydrative stressful conditions during air emersion, related to their vertical position and the habitat heterogeneity. Simultaneously, these gastropods are forced to downregulate metabolism when resting in air to limit dehydration and ensure energetic homeostasis under conditions of constrained food (energy) intake, due to prolonged inactivity. We investigated this apparent conundrum by studying the temporal patterning of metabolic depression and the influence of depressed metabolism on heat tolerance of the tropical high-shore snail, <em>Planaxis sulcatus,</em> during progressive air emersion. We compared cardiac thermal performance (a proxy for metabolic performance) of snails pre-exposed to different periods of air emersion (field fresh, 5 d and 10 d) and different levels of dehydration and heat stress, mimicking naturally sunned or shaded resting habitats. Compared to early air emersion, long resting periods under benign (shaded) conditions suppressed cardiac thermal performance and elevated heat tolerance, responses mostly not modified by dehydration or heat stress. Cardiac (energetic) suppression was temporally idiosyncratic among individuals, becoming more uniform with longer air emersion. Reanalyzed data comparing higher and lower metabolic (energetic) states across the treatments showed greater heat tolerance in lower-energetic snails. The apparent energetic conundrum of simultaneously needing to support energetically-demanding protective heat tolerance and energetically-conserving metabolic depression can be explained by an early highly energy-demanding preparatory stage, which hardens snails for the duration of aestivation, irrespective of the resting habitat conditions. Our observed temporal patterning of metabolism provides an excellent framework for molecular and cellular investigation of high-shore snails.</div></div>","PeriodicalId":55237,"journal":{"name":"Comparative Biochemistry and Physiology A-Molecular & Integrative Physiology","volume":"309 ","pages":"Article 111917"},"PeriodicalIF":2.2000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An energetic conundrum: contradictory relationship between energetic state and heat tolerance during progressive air exposure in a tropical high-shore gastropod\",\"authors\":\"M Akram Ullah , Cristián J. Monaco , David J. Marshall\",\"doi\":\"10.1016/j.cbpa.2025.111917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>High-shore intertidal gastropods experience energy-demanding thermo-dehydrative stressful conditions during air emersion, related to their vertical position and the habitat heterogeneity. Simultaneously, these gastropods are forced to downregulate metabolism when resting in air to limit dehydration and ensure energetic homeostasis under conditions of constrained food (energy) intake, due to prolonged inactivity. We investigated this apparent conundrum by studying the temporal patterning of metabolic depression and the influence of depressed metabolism on heat tolerance of the tropical high-shore snail, <em>Planaxis sulcatus,</em> during progressive air emersion. We compared cardiac thermal performance (a proxy for metabolic performance) of snails pre-exposed to different periods of air emersion (field fresh, 5 d and 10 d) and different levels of dehydration and heat stress, mimicking naturally sunned or shaded resting habitats. Compared to early air emersion, long resting periods under benign (shaded) conditions suppressed cardiac thermal performance and elevated heat tolerance, responses mostly not modified by dehydration or heat stress. Cardiac (energetic) suppression was temporally idiosyncratic among individuals, becoming more uniform with longer air emersion. Reanalyzed data comparing higher and lower metabolic (energetic) states across the treatments showed greater heat tolerance in lower-energetic snails. The apparent energetic conundrum of simultaneously needing to support energetically-demanding protective heat tolerance and energetically-conserving metabolic depression can be explained by an early highly energy-demanding preparatory stage, which hardens snails for the duration of aestivation, irrespective of the resting habitat conditions. Our observed temporal patterning of metabolism provides an excellent framework for molecular and cellular investigation of high-shore snails.</div></div>\",\"PeriodicalId\":55237,\"journal\":{\"name\":\"Comparative Biochemistry and Physiology A-Molecular & Integrative Physiology\",\"volume\":\"309 \",\"pages\":\"Article 111917\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comparative Biochemistry and Physiology A-Molecular & Integrative Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1095643325001163\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology A-Molecular & Integrative Physiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1095643325001163","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
An energetic conundrum: contradictory relationship between energetic state and heat tolerance during progressive air exposure in a tropical high-shore gastropod
High-shore intertidal gastropods experience energy-demanding thermo-dehydrative stressful conditions during air emersion, related to their vertical position and the habitat heterogeneity. Simultaneously, these gastropods are forced to downregulate metabolism when resting in air to limit dehydration and ensure energetic homeostasis under conditions of constrained food (energy) intake, due to prolonged inactivity. We investigated this apparent conundrum by studying the temporal patterning of metabolic depression and the influence of depressed metabolism on heat tolerance of the tropical high-shore snail, Planaxis sulcatus, during progressive air emersion. We compared cardiac thermal performance (a proxy for metabolic performance) of snails pre-exposed to different periods of air emersion (field fresh, 5 d and 10 d) and different levels of dehydration and heat stress, mimicking naturally sunned or shaded resting habitats. Compared to early air emersion, long resting periods under benign (shaded) conditions suppressed cardiac thermal performance and elevated heat tolerance, responses mostly not modified by dehydration or heat stress. Cardiac (energetic) suppression was temporally idiosyncratic among individuals, becoming more uniform with longer air emersion. Reanalyzed data comparing higher and lower metabolic (energetic) states across the treatments showed greater heat tolerance in lower-energetic snails. The apparent energetic conundrum of simultaneously needing to support energetically-demanding protective heat tolerance and energetically-conserving metabolic depression can be explained by an early highly energy-demanding preparatory stage, which hardens snails for the duration of aestivation, irrespective of the resting habitat conditions. Our observed temporal patterning of metabolism provides an excellent framework for molecular and cellular investigation of high-shore snails.
期刊介绍:
Part A: Molecular & Integrative Physiology of Comparative Biochemistry and Physiology. This journal covers molecular, cellular, integrative, and ecological physiology. Topics include bioenergetics, circulation, development, excretion, ion regulation, endocrinology, neurobiology, nutrition, respiration, and thermal biology. Study on regulatory mechanisms at any level of organization such as signal transduction and cellular interaction and control of behavior are also published.