{"title":"下体负压增加坐式反作用力。","authors":"Suhas Rao Velichala, Jonathan Kim, Alan R Hargens","doi":"10.1038/s41526-025-00512-w","DOIUrl":null,"url":null,"abstract":"<p><p>This study evaluates ground reaction forces and cardiovascular responses during seated lower body negative pressure (LBNP). Ten healthy subjects were exposed to randomized LBNP levels (-10 to -40 mmHg) while seated in a sealed chamber. Gluteal, foot, and total reaction forces, along with heart rate and blood pressure, were measured at each level. Reaction forces increased significantly with rising LBNP (P < 0.05), exceeding baseline at 10 mmHg and doubling by 30 mmHg. Cardiovascular parameters remained stable, indicating no acute hemodynamic risk. Force generation was dependent on LBNP amplitude and waist cross-sectional area. These findings suggest that seated LBNP is a safe and effective method to simulate Earth-like seated posture in microgravity, offering a promising countermeasure to mitigate musculoskeletal deconditioning and support gravitational adaptation during long-duration spaceflight.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"11 1","pages":"56"},"PeriodicalIF":4.1000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12350665/pdf/","citationCount":"0","resultStr":"{\"title\":\"Increasing seated reaction forces with lower body negative pressure.\",\"authors\":\"Suhas Rao Velichala, Jonathan Kim, Alan R Hargens\",\"doi\":\"10.1038/s41526-025-00512-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study evaluates ground reaction forces and cardiovascular responses during seated lower body negative pressure (LBNP). Ten healthy subjects were exposed to randomized LBNP levels (-10 to -40 mmHg) while seated in a sealed chamber. Gluteal, foot, and total reaction forces, along with heart rate and blood pressure, were measured at each level. Reaction forces increased significantly with rising LBNP (P < 0.05), exceeding baseline at 10 mmHg and doubling by 30 mmHg. Cardiovascular parameters remained stable, indicating no acute hemodynamic risk. Force generation was dependent on LBNP amplitude and waist cross-sectional area. These findings suggest that seated LBNP is a safe and effective method to simulate Earth-like seated posture in microgravity, offering a promising countermeasure to mitigate musculoskeletal deconditioning and support gravitational adaptation during long-duration spaceflight.</p>\",\"PeriodicalId\":54263,\"journal\":{\"name\":\"npj Microgravity\",\"volume\":\"11 1\",\"pages\":\"56\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12350665/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Microgravity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s41526-025-00512-w\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Microgravity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41526-025-00512-w","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Increasing seated reaction forces with lower body negative pressure.
This study evaluates ground reaction forces and cardiovascular responses during seated lower body negative pressure (LBNP). Ten healthy subjects were exposed to randomized LBNP levels (-10 to -40 mmHg) while seated in a sealed chamber. Gluteal, foot, and total reaction forces, along with heart rate and blood pressure, were measured at each level. Reaction forces increased significantly with rising LBNP (P < 0.05), exceeding baseline at 10 mmHg and doubling by 30 mmHg. Cardiovascular parameters remained stable, indicating no acute hemodynamic risk. Force generation was dependent on LBNP amplitude and waist cross-sectional area. These findings suggest that seated LBNP is a safe and effective method to simulate Earth-like seated posture in microgravity, offering a promising countermeasure to mitigate musculoskeletal deconditioning and support gravitational adaptation during long-duration spaceflight.
npj MicrogravityPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
7.30
自引率
7.80%
发文量
50
审稿时长
9 weeks
期刊介绍:
A new open access, online-only, multidisciplinary research journal, npj Microgravity is dedicated to publishing the most important scientific advances in the life sciences, physical sciences, and engineering fields that are facilitated by spaceflight and analogue platforms.