Z-DNA的形成及其生物学意义。

IF 16.3 2区 生物学 Q1 GENETICS & HEREDITY
Yonghang Run, Mahmoud Tavakoli, Yuxuan Zhang, Karen M Vasquez, Wenli Zhang
{"title":"Z-DNA的形成及其生物学意义。","authors":"Yonghang Run, Mahmoud Tavakoli, Yuxuan Zhang, Karen M Vasquez, Wenli Zhang","doi":"10.1016/j.tig.2025.07.006","DOIUrl":null,"url":null,"abstract":"<p><p>Z-DNA is a left-handed alternative DNA structure that forms at alternating purine-pyrimidine repeats, which are abundant in genomes. It is intrinsically unstable under physiological conditions; however, it can be stabilized by negative supercoiling and specific Z-DNA binding proteins. These stabilizing factors have prompted renewed interest in the biological significance of Z-DNA within the genome. Emerging evidence suggests that Z-DNA plays critical roles in various cellular processes, including transcriptional regulation, genome instability, chromatin remodeling, and the development of human diseases. This review summarizes existing methodologies for local and global identification of Z-DNA, its genomic and epigenetic features, the factors influencing its formation and stability, its biological implications, and future directions to advance our understanding of Z-DNA biology and its potential applications.</p>","PeriodicalId":54413,"journal":{"name":"Trends in Genetics","volume":" ","pages":""},"PeriodicalIF":16.3000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formation and biological implications of Z-DNA.\",\"authors\":\"Yonghang Run, Mahmoud Tavakoli, Yuxuan Zhang, Karen M Vasquez, Wenli Zhang\",\"doi\":\"10.1016/j.tig.2025.07.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Z-DNA is a left-handed alternative DNA structure that forms at alternating purine-pyrimidine repeats, which are abundant in genomes. It is intrinsically unstable under physiological conditions; however, it can be stabilized by negative supercoiling and specific Z-DNA binding proteins. These stabilizing factors have prompted renewed interest in the biological significance of Z-DNA within the genome. Emerging evidence suggests that Z-DNA plays critical roles in various cellular processes, including transcriptional regulation, genome instability, chromatin remodeling, and the development of human diseases. This review summarizes existing methodologies for local and global identification of Z-DNA, its genomic and epigenetic features, the factors influencing its formation and stability, its biological implications, and future directions to advance our understanding of Z-DNA biology and its potential applications.</p>\",\"PeriodicalId\":54413,\"journal\":{\"name\":\"Trends in Genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":16.3000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tig.2025.07.006\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tig.2025.07.006","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

Z-DNA是一种左旋替代性DNA结构,在嘌呤-嘧啶重复序列交替形成,在基因组中大量存在。它在生理条件下本质上是不稳定的;然而,它可以通过负超卷绕和特定的Z-DNA结合蛋白来稳定。这些稳定因素促使人们对基因组中Z-DNA的生物学意义重新产生了兴趣。新出现的证据表明,Z-DNA在各种细胞过程中发挥关键作用,包括转录调节、基因组不稳定、染色质重塑和人类疾病的发展。本文综述了Z-DNA的本地和全球鉴定方法、Z-DNA的基因组和表观遗传学特征、影响Z-DNA形成和稳定性的因素、Z-DNA的生物学意义以及Z-DNA生物学的未来发展方向,以促进我们对Z-DNA生物学及其潜在应用的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Formation and biological implications of Z-DNA.

Z-DNA is a left-handed alternative DNA structure that forms at alternating purine-pyrimidine repeats, which are abundant in genomes. It is intrinsically unstable under physiological conditions; however, it can be stabilized by negative supercoiling and specific Z-DNA binding proteins. These stabilizing factors have prompted renewed interest in the biological significance of Z-DNA within the genome. Emerging evidence suggests that Z-DNA plays critical roles in various cellular processes, including transcriptional regulation, genome instability, chromatin remodeling, and the development of human diseases. This review summarizes existing methodologies for local and global identification of Z-DNA, its genomic and epigenetic features, the factors influencing its formation and stability, its biological implications, and future directions to advance our understanding of Z-DNA biology and its potential applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Trends in Genetics
Trends in Genetics 生物-遗传学
CiteScore
20.90
自引率
0.90%
发文量
160
审稿时长
6-12 weeks
期刊介绍: Launched in 1985, Trends in Genetics swiftly established itself as a "must-read" for geneticists, offering concise, accessible articles covering a spectrum of topics from developmental biology to evolution. This reputation endures, making TiG a cherished resource in the genetic research community. While evolving with the field, the journal now embraces new areas like genomics, epigenetics, and computational genetics, alongside its continued coverage of traditional subjects such as transcriptional regulation, population genetics, and chromosome biology. Despite expanding its scope, the core objective of TiG remains steadfast: to furnish researchers and students with high-quality, innovative reviews, commentaries, and discussions, fostering an appreciation for advances in genetic research. Each issue of TiG presents lively and up-to-date Reviews and Opinions, alongside shorter articles like Science & Society and Spotlight pieces. Invited from leading researchers, Reviews objectively chronicle recent developments, Opinions provide a forum for debate and hypothesis, and shorter articles explore the intersection of genetics with science and policy, as well as emerging ideas in the field. All articles undergo rigorous peer-review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信