安慰剂样本在观察性研究中的作用。

IF 1.8 4区 医学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Journal of Causal Inference Pub Date : 2025-01-01 Epub Date: 2025-03-05 DOI:10.1515/jci-2023-0020
Ting Ye, Qijia He, Shuxiao Chen, Bo Zhang
{"title":"安慰剂样本在观察性研究中的作用。","authors":"Ting Ye, Qijia He, Shuxiao Chen, Bo Zhang","doi":"10.1515/jci-2023-0020","DOIUrl":null,"url":null,"abstract":"<p><p>In an observational study, it is common to leverage known null effects to detect bias. One such strategy is to set aside a placebo sample - a subset of data immune from the hypothesized cause-and-effect relationship. Existence of an effect in the placebo sample raises concerns about unmeasured confounding bias while absence of it helps corroborate the causal conclusion. This paper describes a framework for using a placebo sample to detect and remove bias. We state the identification assumptions and develop estimation and inference methods based on outcome regression, inverse probability weighting, and doubly-robust approaches. Simulation studies investigate the finite-sample performance of the proposed methods. We illustrate the methods using an empirical study of the effect of the earned income tax credit on infant health.</p>","PeriodicalId":48576,"journal":{"name":"Journal of Causal Inference","volume":"13 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12345972/pdf/","citationCount":"0","resultStr":"{\"title\":\"Role of placebo samples in observational studies.\",\"authors\":\"Ting Ye, Qijia He, Shuxiao Chen, Bo Zhang\",\"doi\":\"10.1515/jci-2023-0020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In an observational study, it is common to leverage known null effects to detect bias. One such strategy is to set aside a placebo sample - a subset of data immune from the hypothesized cause-and-effect relationship. Existence of an effect in the placebo sample raises concerns about unmeasured confounding bias while absence of it helps corroborate the causal conclusion. This paper describes a framework for using a placebo sample to detect and remove bias. We state the identification assumptions and develop estimation and inference methods based on outcome regression, inverse probability weighting, and doubly-robust approaches. Simulation studies investigate the finite-sample performance of the proposed methods. We illustrate the methods using an empirical study of the effect of the earned income tax credit on infant health.</p>\",\"PeriodicalId\":48576,\"journal\":{\"name\":\"Journal of Causal Inference\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12345972/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Causal Inference\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1515/jci-2023-0020\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Causal Inference","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1515/jci-2023-0020","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在观察性研究中,利用已知的零效应来检测偏差是很常见的。其中一种策略是留出安慰剂样本——不受假设因果关系影响的数据子集。安慰剂样本中效果的存在引起了对无法测量的混杂偏差的担忧,而不存在它有助于证实因果结论。本文描述了一个使用安慰剂样本来检测和消除偏见的框架。我们陈述了识别假设,并基于结果回归、逆概率加权和双稳健方法开发了估计和推理方法。仿真研究了所提出方法的有限样本性能。我们说明了方法使用的经验研究的影响,所得所得税抵免对婴儿健康。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Role of placebo samples in observational studies.

In an observational study, it is common to leverage known null effects to detect bias. One such strategy is to set aside a placebo sample - a subset of data immune from the hypothesized cause-and-effect relationship. Existence of an effect in the placebo sample raises concerns about unmeasured confounding bias while absence of it helps corroborate the causal conclusion. This paper describes a framework for using a placebo sample to detect and remove bias. We state the identification assumptions and develop estimation and inference methods based on outcome regression, inverse probability weighting, and doubly-robust approaches. Simulation studies investigate the finite-sample performance of the proposed methods. We illustrate the methods using an empirical study of the effect of the earned income tax credit on infant health.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Causal Inference
Journal of Causal Inference Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
1.90
自引率
14.30%
发文量
15
审稿时长
86 weeks
期刊介绍: Journal of Causal Inference (JCI) publishes papers on theoretical and applied causal research across the range of academic disciplines that use quantitative tools to study causality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信