Hong Wei, Tian-Hua Liu, Li-Juan Zhang, Wei Yan, Can Ma, Shi-Hua Lv, Xian-Zhang Zeng, Wen-Zhi Li
{"title":"二甲双胍通过SIRT1通路减轻糖尿病大鼠肺移植后肺缺血再灌注损伤。","authors":"Hong Wei, Tian-Hua Liu, Li-Juan Zhang, Wei Yan, Can Ma, Shi-Hua Lv, Xian-Zhang Zeng, Wen-Zhi Li","doi":"10.3892/mmr.2025.13652","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetes mellitus (DM) exacerbates lung ischemia‑reperfusion (IR) injury and leads to poor survival in lung transplantation recipients. Metformin protects a number of tissues from IR injury. The present study aimed to investigate the effect of metformin on diabetic lung IR injury and the potential mechanisms. Rats with type 2 DM were exposed to metformin with or without administration of EX527, an inhibitor of the silent information regulator 1 (SIRT1) pathway, following lung transplantation. Lung function, alveolar‑capillary permeability, inflammatory response, oxidative stress, cell apoptosis, mitochondrial function, mitochondrial biogenesis key proteins and the SIRT1 signaling pathway were assessed. The effect of metformin on diabetic lung IR injury was evaluated by ELISA, oxidative stress assays, immunofluorescence, flow cytometry, TUNEL assay and western blotting. The results demonstrated that DM was associated with a significant increase in the IR‑induced alveolar‑capillary permeability, inflammatory response, oxidative stress and cell apoptosis. Furthermore, DM was associated with a significant decrease in mitochondrial function and biogenesis, SIRT1 expression and lung function. Metformin treatment markedly attenuated diabetic lung IR injury by alleviating the inflammatory response, oxidative stress and cell apoptosis, preserving mitochondrial function, and promoting mitochondrial biogenesis. However, EX527 inhibited the protective effect of metformin. In conclusion, metformin alleviated the inflammatory response, oxidative stress and cell apoptosis, preserved mitochondrial function, and promoted mitochondrial biogenesis via the activation of the SIRT1 pathway in diabetic lung IR injury.</p>","PeriodicalId":18818,"journal":{"name":"Molecular medicine reports","volume":"32 5","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12382430/pdf/","citationCount":"0","resultStr":"{\"title\":\"Metformin alleviates lung ischemia‑reperfusion injury via the SIRT1 pathway following lung transplantation in diabetic rats.\",\"authors\":\"Hong Wei, Tian-Hua Liu, Li-Juan Zhang, Wei Yan, Can Ma, Shi-Hua Lv, Xian-Zhang Zeng, Wen-Zhi Li\",\"doi\":\"10.3892/mmr.2025.13652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diabetes mellitus (DM) exacerbates lung ischemia‑reperfusion (IR) injury and leads to poor survival in lung transplantation recipients. Metformin protects a number of tissues from IR injury. The present study aimed to investigate the effect of metformin on diabetic lung IR injury and the potential mechanisms. Rats with type 2 DM were exposed to metformin with or without administration of EX527, an inhibitor of the silent information regulator 1 (SIRT1) pathway, following lung transplantation. Lung function, alveolar‑capillary permeability, inflammatory response, oxidative stress, cell apoptosis, mitochondrial function, mitochondrial biogenesis key proteins and the SIRT1 signaling pathway were assessed. The effect of metformin on diabetic lung IR injury was evaluated by ELISA, oxidative stress assays, immunofluorescence, flow cytometry, TUNEL assay and western blotting. The results demonstrated that DM was associated with a significant increase in the IR‑induced alveolar‑capillary permeability, inflammatory response, oxidative stress and cell apoptosis. Furthermore, DM was associated with a significant decrease in mitochondrial function and biogenesis, SIRT1 expression and lung function. Metformin treatment markedly attenuated diabetic lung IR injury by alleviating the inflammatory response, oxidative stress and cell apoptosis, preserving mitochondrial function, and promoting mitochondrial biogenesis. However, EX527 inhibited the protective effect of metformin. In conclusion, metformin alleviated the inflammatory response, oxidative stress and cell apoptosis, preserved mitochondrial function, and promoted mitochondrial biogenesis via the activation of the SIRT1 pathway in diabetic lung IR injury.</p>\",\"PeriodicalId\":18818,\"journal\":{\"name\":\"Molecular medicine reports\",\"volume\":\"32 5\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12382430/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular medicine reports\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3892/mmr.2025.13652\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular medicine reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3892/mmr.2025.13652","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Metformin alleviates lung ischemia‑reperfusion injury via the SIRT1 pathway following lung transplantation in diabetic rats.
Diabetes mellitus (DM) exacerbates lung ischemia‑reperfusion (IR) injury and leads to poor survival in lung transplantation recipients. Metformin protects a number of tissues from IR injury. The present study aimed to investigate the effect of metformin on diabetic lung IR injury and the potential mechanisms. Rats with type 2 DM were exposed to metformin with or without administration of EX527, an inhibitor of the silent information regulator 1 (SIRT1) pathway, following lung transplantation. Lung function, alveolar‑capillary permeability, inflammatory response, oxidative stress, cell apoptosis, mitochondrial function, mitochondrial biogenesis key proteins and the SIRT1 signaling pathway were assessed. The effect of metformin on diabetic lung IR injury was evaluated by ELISA, oxidative stress assays, immunofluorescence, flow cytometry, TUNEL assay and western blotting. The results demonstrated that DM was associated with a significant increase in the IR‑induced alveolar‑capillary permeability, inflammatory response, oxidative stress and cell apoptosis. Furthermore, DM was associated with a significant decrease in mitochondrial function and biogenesis, SIRT1 expression and lung function. Metformin treatment markedly attenuated diabetic lung IR injury by alleviating the inflammatory response, oxidative stress and cell apoptosis, preserving mitochondrial function, and promoting mitochondrial biogenesis. However, EX527 inhibited the protective effect of metformin. In conclusion, metformin alleviated the inflammatory response, oxidative stress and cell apoptosis, preserved mitochondrial function, and promoted mitochondrial biogenesis via the activation of the SIRT1 pathway in diabetic lung IR injury.
期刊介绍:
Molecular Medicine Reports is a monthly, peer-reviewed journal available in print and online, that includes studies devoted to molecular medicine, underscoring aspects including pharmacology, pathology, genetics, neurosciences, infectious diseases, molecular cardiology and molecular surgery. In vitro and in vivo studies of experimental model systems pertaining to the mechanisms of a variety of diseases offer researchers the necessary tools and knowledge with which to aid the diagnosis and treatment of human diseases.