通过转录因子结合位点的大规模分析探索玉米转录调控景观。

IF 24.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Molecular Plant Pub Date : 2025-10-06 Epub Date: 2025-08-12 DOI:10.1016/j.molp.2025.08.009
Qiang Huo, Ziru Zhang, Kechun Zhang, Qun Wang, Weixiao Zhang, Xinyu Ye, Qingya Lyu, David W Galbraith, Zeyang Ma, Rentao Song
{"title":"通过转录因子结合位点的大规模分析探索玉米转录调控景观。","authors":"Qiang Huo, Ziru Zhang, Kechun Zhang, Qun Wang, Weixiao Zhang, Xinyu Ye, Qingya Lyu, David W Galbraith, Zeyang Ma, Rentao Song","doi":"10.1016/j.molp.2025.08.009","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding gene regulatory networks (GRNs) is essential for improving maize yield and quality through molecular breeding approaches. The lack of comprehensive transcription factor (TF)-DNA interaction data has hindered accurate GRN predictions, limiting our insight into the regulatory mechanisms. In this study, we performed large-scale profiling of maize TF binding sites. We obtained and collected reliable binding profiles for 513 TFs, identified 394,136 binding sites, and constructed an accuracy-enhanced maize GRN (mGRN+) by integrating chromatin accessibility and gene expression data. The mGRN+ comprises 397,699 regulatory relationships. We further divided the mGRN+ into multiple modules across six major tissues. Using machine-learning algorithms, we optimized the mGRN+ to improve the prediction accuracy of gene functions and key regulators. Through independent genetic validation experiments, we further confirmed the reliability of these predictions. This work provides the largest collection of experimental TF binding sites in maize and highly optimized regulatory networks, which serve as valuable resources for studying maize gene function and crop improvement.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"1777-1798"},"PeriodicalIF":24.1000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the maize transcriptional regulatory landscape through large-scale profiling of transcription factor binding sites.\",\"authors\":\"Qiang Huo, Ziru Zhang, Kechun Zhang, Qun Wang, Weixiao Zhang, Xinyu Ye, Qingya Lyu, David W Galbraith, Zeyang Ma, Rentao Song\",\"doi\":\"10.1016/j.molp.2025.08.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding gene regulatory networks (GRNs) is essential for improving maize yield and quality through molecular breeding approaches. The lack of comprehensive transcription factor (TF)-DNA interaction data has hindered accurate GRN predictions, limiting our insight into the regulatory mechanisms. In this study, we performed large-scale profiling of maize TF binding sites. We obtained and collected reliable binding profiles for 513 TFs, identified 394,136 binding sites, and constructed an accuracy-enhanced maize GRN (mGRN+) by integrating chromatin accessibility and gene expression data. The mGRN+ comprises 397,699 regulatory relationships. We further divided the mGRN+ into multiple modules across six major tissues. Using machine-learning algorithms, we optimized the mGRN+ to improve the prediction accuracy of gene functions and key regulators. Through independent genetic validation experiments, we further confirmed the reliability of these predictions. This work provides the largest collection of experimental TF binding sites in maize and highly optimized regulatory networks, which serve as valuable resources for studying maize gene function and crop improvement.</p>\",\"PeriodicalId\":19012,\"journal\":{\"name\":\"Molecular Plant\",\"volume\":\" \",\"pages\":\"1777-1798\"},\"PeriodicalIF\":24.1000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Plant\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.molp.2025.08.009\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Plant","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molp.2025.08.009","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

了解基因调控网络(GRNs)对通过分子育种方法提高玉米产量和品质至关重要。转录因子(TF)-DNA相互作用数据的缺乏阻碍了准确的GRN预测,限制了我们对调控机制的了解。在这里,我们对玉米TF结合位点进行了大规模的分析。我们获得并收集了513个TFs的可靠结合谱,确定了394,136个结合位点,并通过整合染色质可及性和基因表达数据构建了准确性增强的玉米GRN (mGRN+)。mGRN+包括397,699个监管关系。我们进一步将mGRN+分为六个主要组织中的多个模块。利用机器学习算法,我们对mGRN+进行了优化,以提高基因功能和关键调控因子的预测精度。通过独立的基因验证实验,我们进一步证实了这些预测的可靠性。这项工作提供了玉米中最大的实验TF结合位点集合和高度优化的调控网络,为玉米基因功能研究和作物改良应用提供了宝贵的资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring the maize transcriptional regulatory landscape through large-scale profiling of transcription factor binding sites.

Understanding gene regulatory networks (GRNs) is essential for improving maize yield and quality through molecular breeding approaches. The lack of comprehensive transcription factor (TF)-DNA interaction data has hindered accurate GRN predictions, limiting our insight into the regulatory mechanisms. In this study, we performed large-scale profiling of maize TF binding sites. We obtained and collected reliable binding profiles for 513 TFs, identified 394,136 binding sites, and constructed an accuracy-enhanced maize GRN (mGRN+) by integrating chromatin accessibility and gene expression data. The mGRN+ comprises 397,699 regulatory relationships. We further divided the mGRN+ into multiple modules across six major tissues. Using machine-learning algorithms, we optimized the mGRN+ to improve the prediction accuracy of gene functions and key regulators. Through independent genetic validation experiments, we further confirmed the reliability of these predictions. This work provides the largest collection of experimental TF binding sites in maize and highly optimized regulatory networks, which serve as valuable resources for studying maize gene function and crop improvement.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Plant
Molecular Plant 植物科学-生化与分子生物学
CiteScore
37.60
自引率
2.20%
发文量
1784
审稿时长
1 months
期刊介绍: Molecular Plant is dedicated to serving the plant science community by publishing novel and exciting findings with high significance in plant biology. The journal focuses broadly on cellular biology, physiology, biochemistry, molecular biology, genetics, development, plant-microbe interaction, genomics, bioinformatics, and molecular evolution. Molecular Plant publishes original research articles, reviews, Correspondence, and Spotlights on the most important developments in plant biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信