多部位脑DCE-MRI动脉输入功能的自动检测。

IF 3 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Lucas Saca, Raghav Gaggar, Ioannis Pappas, Tammie Benzinger, Eric M. Reiman, Mark S. Shiroishi, Elizabeth B. Joe, John M. Ringman, Hussein N. Yassine, Lon S. Schneider, Helena C. Chui, Daniel A. Nation, Berislav V. Zlokovic, Arthur W. Toga, Ararat Chakhoyan, Samuel Barnes
{"title":"多部位脑DCE-MRI动脉输入功能的自动检测。","authors":"Lucas Saca,&nbsp;Raghav Gaggar,&nbsp;Ioannis Pappas,&nbsp;Tammie Benzinger,&nbsp;Eric M. Reiman,&nbsp;Mark S. Shiroishi,&nbsp;Elizabeth B. Joe,&nbsp;John M. Ringman,&nbsp;Hussein N. Yassine,&nbsp;Lon S. Schneider,&nbsp;Helena C. Chui,&nbsp;Daniel A. Nation,&nbsp;Berislav V. Zlokovic,&nbsp;Arthur W. Toga,&nbsp;Ararat Chakhoyan,&nbsp;Samuel Barnes","doi":"10.1002/mrm.70020","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Purpose</h3>\n \n <p>Arterial input function (AIF) extraction is a crucial step in quantitative pharmacokinetic modeling of DCE-MRI. This work proposes a robust deep learning model that can precisely extract an AIF from DCE-MRI images.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>A diverse dataset of human brain DCE-MRI images from 289 participants, totaling 384 scans, from five different institutions with extracted gadolinium-based contrast agent curves from large penetrating arteries, and with most data collected for blood–brain barrier (BBB) permeability measurement, was retrospectively analyzed. A 3D UNet model was implemented and trained on manually drawn AIF regions. The testing cohort was compared using proposed AIF quality metric AIFitness and K<sup>trans</sup> values from a standard DCE pipeline. This UNet was then applied to a separate dataset of 326 participants with a total of 421 DCE-MRI images with analyzed AIF quality and K<sup>trans</sup> values.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>The resulting 3D UNet model achieved an average AIFitness score of 93.9 compared to 99.7 for manually selected AIFs, and white matter K<sup>trans</sup> values were 0.45/min × 10<sup>−3</sup> and 0.45/min × 10<sup>−3</sup>, respectively. The intraclass correlation between automated and manual K<sup>trans</sup> values was 0.89. The separate replication dataset yielded an AIFitness score of 97.0 and white matter K<sup>trans</sup> of 0.44/min × 10<sup>−3</sup>.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>Findings suggest a 3D UNet model with additional convolutional neural network kernels and a modified Huber loss function achieves superior performance for identifying AIF curves from DCE-MRI in a diverse multi-center cohort. AIFitness scores and DCE-MRI-derived metrics, such as K<sup>trans</sup> maps, showed no significant differences in gray and white matter between manually drawn and automated AIFs.</p>\n </section>\n </div>","PeriodicalId":18065,"journal":{"name":"Magnetic Resonance in Medicine","volume":"94 6","pages":"2732-2744"},"PeriodicalIF":3.0000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mrm.70020","citationCount":"0","resultStr":"{\"title\":\"Automatic detection of arterial input function for brain DCE-MRI in multi-site cohorts\",\"authors\":\"Lucas Saca,&nbsp;Raghav Gaggar,&nbsp;Ioannis Pappas,&nbsp;Tammie Benzinger,&nbsp;Eric M. Reiman,&nbsp;Mark S. Shiroishi,&nbsp;Elizabeth B. Joe,&nbsp;John M. Ringman,&nbsp;Hussein N. Yassine,&nbsp;Lon S. Schneider,&nbsp;Helena C. Chui,&nbsp;Daniel A. Nation,&nbsp;Berislav V. Zlokovic,&nbsp;Arthur W. Toga,&nbsp;Ararat Chakhoyan,&nbsp;Samuel Barnes\",\"doi\":\"10.1002/mrm.70020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Purpose</h3>\\n \\n <p>Arterial input function (AIF) extraction is a crucial step in quantitative pharmacokinetic modeling of DCE-MRI. This work proposes a robust deep learning model that can precisely extract an AIF from DCE-MRI images.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>A diverse dataset of human brain DCE-MRI images from 289 participants, totaling 384 scans, from five different institutions with extracted gadolinium-based contrast agent curves from large penetrating arteries, and with most data collected for blood–brain barrier (BBB) permeability measurement, was retrospectively analyzed. A 3D UNet model was implemented and trained on manually drawn AIF regions. The testing cohort was compared using proposed AIF quality metric AIFitness and K<sup>trans</sup> values from a standard DCE pipeline. This UNet was then applied to a separate dataset of 326 participants with a total of 421 DCE-MRI images with analyzed AIF quality and K<sup>trans</sup> values.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>The resulting 3D UNet model achieved an average AIFitness score of 93.9 compared to 99.7 for manually selected AIFs, and white matter K<sup>trans</sup> values were 0.45/min × 10<sup>−3</sup> and 0.45/min × 10<sup>−3</sup>, respectively. The intraclass correlation between automated and manual K<sup>trans</sup> values was 0.89. The separate replication dataset yielded an AIFitness score of 97.0 and white matter K<sup>trans</sup> of 0.44/min × 10<sup>−3</sup>.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusion</h3>\\n \\n <p>Findings suggest a 3D UNet model with additional convolutional neural network kernels and a modified Huber loss function achieves superior performance for identifying AIF curves from DCE-MRI in a diverse multi-center cohort. AIFitness scores and DCE-MRI-derived metrics, such as K<sup>trans</sup> maps, showed no significant differences in gray and white matter between manually drawn and automated AIFs.</p>\\n </section>\\n </div>\",\"PeriodicalId\":18065,\"journal\":{\"name\":\"Magnetic Resonance in Medicine\",\"volume\":\"94 6\",\"pages\":\"2732-2744\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mrm.70020\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetic Resonance in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mrm.70020\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance in Medicine","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mrm.70020","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

目的:动脉输入功能(AIF)提取是DCE-MRI定量药代动力学建模的关键步骤。这项工作提出了一个强大的深度学习模型,可以精确地从DCE-MRI图像中提取AIF。方法:回顾性分析来自5个不同机构的289名参与者的384次脑部DCE-MRI图像的不同数据集,这些数据来自大穿透动脉提取的钆基造影剂曲线,并收集了大部分用于血脑屏障(BBB)渗透率测量的数据。在手工绘制的AIF区域上实现了三维UNet模型并进行了训练。测试队列使用标准DCE管道提出的AIF质量度量AIFitness和Ktrans值进行比较。然后将该UNet应用于326名参与者的单独数据集,其中共有421张DCE-MRI图像,分析了AIF质量和Ktrans值。结果:三维UNet模型的AIFitness平均得分为93.9,而人工选择的AIFs平均得分为99.7,白质Ktrans值分别为0.45/min × 10-3和0.45/min × 10-3。自动和手动Ktrans值的类内相关性为0.89。单独的复制数据集的AIFitness得分为97.0,白质Ktrans为0.44/min × 10-3。结论:研究结果表明,具有额外卷积神经网络核和改进的Huber损失函数的3D UNet模型在识别不同多中心队列的DCE-MRI AIF曲线方面具有优越的性能。AIFitness评分和dce - mri衍生的指标,如Ktrans图,显示手动绘制和自动绘制的aif在灰质和白质方面没有显着差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Automatic detection of arterial input function for brain DCE-MRI in multi-site cohorts

Automatic detection of arterial input function for brain DCE-MRI in multi-site cohorts

Purpose

Arterial input function (AIF) extraction is a crucial step in quantitative pharmacokinetic modeling of DCE-MRI. This work proposes a robust deep learning model that can precisely extract an AIF from DCE-MRI images.

Methods

A diverse dataset of human brain DCE-MRI images from 289 participants, totaling 384 scans, from five different institutions with extracted gadolinium-based contrast agent curves from large penetrating arteries, and with most data collected for blood–brain barrier (BBB) permeability measurement, was retrospectively analyzed. A 3D UNet model was implemented and trained on manually drawn AIF regions. The testing cohort was compared using proposed AIF quality metric AIFitness and Ktrans values from a standard DCE pipeline. This UNet was then applied to a separate dataset of 326 participants with a total of 421 DCE-MRI images with analyzed AIF quality and Ktrans values.

Results

The resulting 3D UNet model achieved an average AIFitness score of 93.9 compared to 99.7 for manually selected AIFs, and white matter Ktrans values were 0.45/min × 10−3 and 0.45/min × 10−3, respectively. The intraclass correlation between automated and manual Ktrans values was 0.89. The separate replication dataset yielded an AIFitness score of 97.0 and white matter Ktrans of 0.44/min × 10−3.

Conclusion

Findings suggest a 3D UNet model with additional convolutional neural network kernels and a modified Huber loss function achieves superior performance for identifying AIF curves from DCE-MRI in a diverse multi-center cohort. AIFitness scores and DCE-MRI-derived metrics, such as Ktrans maps, showed no significant differences in gray and white matter between manually drawn and automated AIFs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
24.20%
发文量
376
审稿时长
2-4 weeks
期刊介绍: Magnetic Resonance in Medicine (Magn Reson Med) is an international journal devoted to the publication of original investigations concerned with all aspects of the development and use of nuclear magnetic resonance and electron paramagnetic resonance techniques for medical applications. Reports of original investigations in the areas of mathematics, computing, engineering, physics, biophysics, chemistry, biochemistry, and physiology directly relevant to magnetic resonance will be accepted, as well as methodology-oriented clinical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信