Mohammed Alshehri, Tingting Xue, Ghulam Mujtaba, Yahya AlQahtani, Nouf Abdullah Almujally, Ahmad Jalal, Hui Liu
{"title":"基于无人机图像的多目标检测与识别集成神经网络框架。","authors":"Mohammed Alshehri, Tingting Xue, Ghulam Mujtaba, Yahya AlQahtani, Nouf Abdullah Almujally, Ahmad Jalal, Hui Liu","doi":"10.3389/fnbot.2025.1643011","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Accurate vehicle analysis from aerial imagery has become increasingly vital for emerging technologies and public service applications such as intelligent traffic management, urban planning, autonomous navigation, and military surveillance. However, analyzing UAV-captured video poses several inherent challenges, such as the small size of target vehicles, occlusions, cluttered urban backgrounds, motion blur, and fluctuating lighting conditions which hinder the accuracy and consistency of conventional perception systems. To address these complexities, our research proposes a fully end-to-end deep learning-driven perception pipeline specifically optimized for UAV-based traffic monitoring. The proposed framwork integrates multiple advanced modules: RetinexNet for preprocessing, segmentation using HRNet to preserve high-resolution semantic information, and vehicle detection using the YOLOv11 framework. Deep SORT is employed for efficient vehicle tracking, while CSRNet facilitates high-density vehicle counting. LSTM networks are integrated to predict vehicle trajectories based on temporal patterns, and a combination of DenseNet and SuperPoint is utilized for robust feature extraction. Finally, classification is performed using Vision Transformers (ViTs), leveraging attention mechanisms to ensure accurate recognition across diverse categories. The modular yet unified architecture is designed to handle spatiotemporal dynamics, making it suitable for real-time deployment in diverse UAV platforms.</p><p><strong>Method: </strong>The framework suggests using today's best neural networks that are made to solve different problems in aerial vehicle analysis. RetinexNet is used in preprocessing to make the lighting of each input frame consistent. Using HRNet for semantic segmentation allows for accurate splitting between vehicles and their surroundings. YOLOv11 provides high precision and quick vehicle detection and Deep SORT allows reliable tracking without losing track of individual cars. CSRNet are used for vehicle counting that is unaffected by obstacles or traffic jams. LSTM models capture how a car moves in time to forecast future positions. Combining DenseNet and SuperPoint embeddings that were improved with an AutoEncoder is done during feature extraction. In the end, using an attention function, Vision Transformer-based models classify vehicles seen from above. Every part of the system is developed and included to give the improved performance when the UAV is being used in real life.</p><p><strong>Results: </strong>Our proposed framework significantly improves the accuracy, reliability, and efficiency of vehicle analysis from UAV imagery. Our pipeline was rigorously evaluated on two famous datasets, AU-AIR and Roundabout. On the AU-AIR dataset, the system achieved a detection accuracy of 97.8%, a tracking accuracy of 96.5%, and a classification accuracy of 98.4%. Similarly, on the Roundabout dataset, it reached 96.9% detection accuracy, 94.4% tracking accuracy, and 97.7% classification accuracy. These results surpass previous benchmarks, demonstrating the system's robust performance across diverse aerial traffic scenarios. The integration of advanced models, YOLOv11 for detection, HRNet for segmentation, Deep SORT for tracking, CSRNet for counting, LSTM for trajectory prediction, and Vision Transformers for classification enables the framework to maintain high accuracy even under challenging conditions like occlusion, variable lighting, and scale variations.</p><p><strong>Discussion: </strong>The outcomes show that the chosen deep learning system is powerful enough to deal with the challenges of aerial vehicle analysis and gives reliable and precise results in all the aforementioned tasks. Combining several advanced models ensures that the system works smoothly even when dealing with problems like people being covered up and varying sizes.</p>","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"19 ","pages":"1643011"},"PeriodicalIF":2.8000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12343587/pdf/","citationCount":"0","resultStr":"{\"title\":\"Integrated neural network framework for multi-object detection and recognition using UAV imagery.\",\"authors\":\"Mohammed Alshehri, Tingting Xue, Ghulam Mujtaba, Yahya AlQahtani, Nouf Abdullah Almujally, Ahmad Jalal, Hui Liu\",\"doi\":\"10.3389/fnbot.2025.1643011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Accurate vehicle analysis from aerial imagery has become increasingly vital for emerging technologies and public service applications such as intelligent traffic management, urban planning, autonomous navigation, and military surveillance. However, analyzing UAV-captured video poses several inherent challenges, such as the small size of target vehicles, occlusions, cluttered urban backgrounds, motion blur, and fluctuating lighting conditions which hinder the accuracy and consistency of conventional perception systems. To address these complexities, our research proposes a fully end-to-end deep learning-driven perception pipeline specifically optimized for UAV-based traffic monitoring. The proposed framwork integrates multiple advanced modules: RetinexNet for preprocessing, segmentation using HRNet to preserve high-resolution semantic information, and vehicle detection using the YOLOv11 framework. Deep SORT is employed for efficient vehicle tracking, while CSRNet facilitates high-density vehicle counting. LSTM networks are integrated to predict vehicle trajectories based on temporal patterns, and a combination of DenseNet and SuperPoint is utilized for robust feature extraction. Finally, classification is performed using Vision Transformers (ViTs), leveraging attention mechanisms to ensure accurate recognition across diverse categories. The modular yet unified architecture is designed to handle spatiotemporal dynamics, making it suitable for real-time deployment in diverse UAV platforms.</p><p><strong>Method: </strong>The framework suggests using today's best neural networks that are made to solve different problems in aerial vehicle analysis. RetinexNet is used in preprocessing to make the lighting of each input frame consistent. Using HRNet for semantic segmentation allows for accurate splitting between vehicles and their surroundings. YOLOv11 provides high precision and quick vehicle detection and Deep SORT allows reliable tracking without losing track of individual cars. CSRNet are used for vehicle counting that is unaffected by obstacles or traffic jams. LSTM models capture how a car moves in time to forecast future positions. Combining DenseNet and SuperPoint embeddings that were improved with an AutoEncoder is done during feature extraction. In the end, using an attention function, Vision Transformer-based models classify vehicles seen from above. Every part of the system is developed and included to give the improved performance when the UAV is being used in real life.</p><p><strong>Results: </strong>Our proposed framework significantly improves the accuracy, reliability, and efficiency of vehicle analysis from UAV imagery. Our pipeline was rigorously evaluated on two famous datasets, AU-AIR and Roundabout. On the AU-AIR dataset, the system achieved a detection accuracy of 97.8%, a tracking accuracy of 96.5%, and a classification accuracy of 98.4%. Similarly, on the Roundabout dataset, it reached 96.9% detection accuracy, 94.4% tracking accuracy, and 97.7% classification accuracy. These results surpass previous benchmarks, demonstrating the system's robust performance across diverse aerial traffic scenarios. The integration of advanced models, YOLOv11 for detection, HRNet for segmentation, Deep SORT for tracking, CSRNet for counting, LSTM for trajectory prediction, and Vision Transformers for classification enables the framework to maintain high accuracy even under challenging conditions like occlusion, variable lighting, and scale variations.</p><p><strong>Discussion: </strong>The outcomes show that the chosen deep learning system is powerful enough to deal with the challenges of aerial vehicle analysis and gives reliable and precise results in all the aforementioned tasks. Combining several advanced models ensures that the system works smoothly even when dealing with problems like people being covered up and varying sizes.</p>\",\"PeriodicalId\":12628,\"journal\":{\"name\":\"Frontiers in Neurorobotics\",\"volume\":\"19 \",\"pages\":\"1643011\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12343587/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Neurorobotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3389/fnbot.2025.1643011\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neurorobotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3389/fnbot.2025.1643011","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Integrated neural network framework for multi-object detection and recognition using UAV imagery.
Introduction: Accurate vehicle analysis from aerial imagery has become increasingly vital for emerging technologies and public service applications such as intelligent traffic management, urban planning, autonomous navigation, and military surveillance. However, analyzing UAV-captured video poses several inherent challenges, such as the small size of target vehicles, occlusions, cluttered urban backgrounds, motion blur, and fluctuating lighting conditions which hinder the accuracy and consistency of conventional perception systems. To address these complexities, our research proposes a fully end-to-end deep learning-driven perception pipeline specifically optimized for UAV-based traffic monitoring. The proposed framwork integrates multiple advanced modules: RetinexNet for preprocessing, segmentation using HRNet to preserve high-resolution semantic information, and vehicle detection using the YOLOv11 framework. Deep SORT is employed for efficient vehicle tracking, while CSRNet facilitates high-density vehicle counting. LSTM networks are integrated to predict vehicle trajectories based on temporal patterns, and a combination of DenseNet and SuperPoint is utilized for robust feature extraction. Finally, classification is performed using Vision Transformers (ViTs), leveraging attention mechanisms to ensure accurate recognition across diverse categories. The modular yet unified architecture is designed to handle spatiotemporal dynamics, making it suitable for real-time deployment in diverse UAV platforms.
Method: The framework suggests using today's best neural networks that are made to solve different problems in aerial vehicle analysis. RetinexNet is used in preprocessing to make the lighting of each input frame consistent. Using HRNet for semantic segmentation allows for accurate splitting between vehicles and their surroundings. YOLOv11 provides high precision and quick vehicle detection and Deep SORT allows reliable tracking without losing track of individual cars. CSRNet are used for vehicle counting that is unaffected by obstacles or traffic jams. LSTM models capture how a car moves in time to forecast future positions. Combining DenseNet and SuperPoint embeddings that were improved with an AutoEncoder is done during feature extraction. In the end, using an attention function, Vision Transformer-based models classify vehicles seen from above. Every part of the system is developed and included to give the improved performance when the UAV is being used in real life.
Results: Our proposed framework significantly improves the accuracy, reliability, and efficiency of vehicle analysis from UAV imagery. Our pipeline was rigorously evaluated on two famous datasets, AU-AIR and Roundabout. On the AU-AIR dataset, the system achieved a detection accuracy of 97.8%, a tracking accuracy of 96.5%, and a classification accuracy of 98.4%. Similarly, on the Roundabout dataset, it reached 96.9% detection accuracy, 94.4% tracking accuracy, and 97.7% classification accuracy. These results surpass previous benchmarks, demonstrating the system's robust performance across diverse aerial traffic scenarios. The integration of advanced models, YOLOv11 for detection, HRNet for segmentation, Deep SORT for tracking, CSRNet for counting, LSTM for trajectory prediction, and Vision Transformers for classification enables the framework to maintain high accuracy even under challenging conditions like occlusion, variable lighting, and scale variations.
Discussion: The outcomes show that the chosen deep learning system is powerful enough to deal with the challenges of aerial vehicle analysis and gives reliable and precise results in all the aforementioned tasks. Combining several advanced models ensures that the system works smoothly even when dealing with problems like people being covered up and varying sizes.
期刊介绍:
Frontiers in Neurorobotics publishes rigorously peer-reviewed research in the science and technology of embodied autonomous neural systems. Specialty Chief Editors Alois C. Knoll and Florian Röhrbein at the Technische Universität München are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide.
Neural systems include brain-inspired algorithms (e.g. connectionist networks), computational models of biological neural networks (e.g. artificial spiking neural nets, large-scale simulations of neural microcircuits) and actual biological systems (e.g. in vivo and in vitro neural nets). The focus of the journal is the embodiment of such neural systems in artificial software and hardware devices, machines, robots or any other form of physical actuation. This also includes prosthetic devices, brain machine interfaces, wearable systems, micro-machines, furniture, home appliances, as well as systems for managing micro and macro infrastructures. Frontiers in Neurorobotics also aims to publish radically new tools and methods to study plasticity and development of autonomous self-learning systems that are capable of acquiring knowledge in an open-ended manner. Models complemented with experimental studies revealing self-organizing principles of embodied neural systems are welcome. Our journal also publishes on the micro and macro engineering and mechatronics of robotic devices driven by neural systems, as well as studies on the impact that such systems will have on our daily life.