{"title":"研究微生物铁稳态和氧化应激的工具:目前的技术和方法差距。","authors":"Patryk Strzelecki, Dariusz Nowicki","doi":"10.3389/fmolb.2025.1628725","DOIUrl":null,"url":null,"abstract":"<p><p>Iron is a vital nutrient for both microbial pathogens and their eukaryotic hosts, playing essential roles in stress adaptation, symbiotic interactions, virulence expression, and chronic inflammatory diseases. This review discusses current laboratory methods for iron detection and quantification in microbial cultures, host-pathogen models, and environmental samples. Microbial pathogens have evolved sophisticated specialized transport systems, iron acquisition strategies to overcome its limitation, including siderophore production, uptake of heme and host iron-binding. These iron-scavenging systems are closely linked to the regulation of virulence traits such as adhesion, motility, toxin secretion, and biofilm formation. In ESKAPEE pathogens (<i>Enterococcus faecium</i>, <i>Staphylococcus aureus</i>, <i>Klebsiella pneumoniae</i>, <i>Acinetobacter baumannii</i>, <i>Pseudomonas aeruginosa</i>, <i>Enterobacter</i> spp. and <i>Escherichia coli</i>), iron limitation enhances biofilm development, which protects bacteria from antibiotics and immune responses and promotes persistent infections. Even worse, pathogens can also manipulate host iron metabolism, exacerbating inflammation and disease progression. Although iron is indispensable for microbial growth, excessive intracellular iron promotes reactive oxygen species generation, causing oxidative damage and ferroptosis-like cell death. Understanding the dual role of iron as both a nutrient and a toxic agent highlights its importance in infection dynamics. We provide a critical overview of existing analytical techniques and emphasize the need for careful selection of methods to improve our understanding of microbial iron metabolism, host-pathogen interactions, and to support the development of new therapeutic and environmental monitoring strategies.</p>","PeriodicalId":12465,"journal":{"name":"Frontiers in Molecular Biosciences","volume":"12 ","pages":"1628725"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12343225/pdf/","citationCount":"0","resultStr":"{\"title\":\"Tools to study microbial iron homeostasis and oxidative stress: current techniques and methodological gaps.\",\"authors\":\"Patryk Strzelecki, Dariusz Nowicki\",\"doi\":\"10.3389/fmolb.2025.1628725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Iron is a vital nutrient for both microbial pathogens and their eukaryotic hosts, playing essential roles in stress adaptation, symbiotic interactions, virulence expression, and chronic inflammatory diseases. This review discusses current laboratory methods for iron detection and quantification in microbial cultures, host-pathogen models, and environmental samples. Microbial pathogens have evolved sophisticated specialized transport systems, iron acquisition strategies to overcome its limitation, including siderophore production, uptake of heme and host iron-binding. These iron-scavenging systems are closely linked to the regulation of virulence traits such as adhesion, motility, toxin secretion, and biofilm formation. In ESKAPEE pathogens (<i>Enterococcus faecium</i>, <i>Staphylococcus aureus</i>, <i>Klebsiella pneumoniae</i>, <i>Acinetobacter baumannii</i>, <i>Pseudomonas aeruginosa</i>, <i>Enterobacter</i> spp. and <i>Escherichia coli</i>), iron limitation enhances biofilm development, which protects bacteria from antibiotics and immune responses and promotes persistent infections. Even worse, pathogens can also manipulate host iron metabolism, exacerbating inflammation and disease progression. Although iron is indispensable for microbial growth, excessive intracellular iron promotes reactive oxygen species generation, causing oxidative damage and ferroptosis-like cell death. Understanding the dual role of iron as both a nutrient and a toxic agent highlights its importance in infection dynamics. We provide a critical overview of existing analytical techniques and emphasize the need for careful selection of methods to improve our understanding of microbial iron metabolism, host-pathogen interactions, and to support the development of new therapeutic and environmental monitoring strategies.</p>\",\"PeriodicalId\":12465,\"journal\":{\"name\":\"Frontiers in Molecular Biosciences\",\"volume\":\"12 \",\"pages\":\"1628725\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12343225/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Molecular Biosciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3389/fmolb.2025.1628725\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Molecular Biosciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmolb.2025.1628725","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Tools to study microbial iron homeostasis and oxidative stress: current techniques and methodological gaps.
Iron is a vital nutrient for both microbial pathogens and their eukaryotic hosts, playing essential roles in stress adaptation, symbiotic interactions, virulence expression, and chronic inflammatory diseases. This review discusses current laboratory methods for iron detection and quantification in microbial cultures, host-pathogen models, and environmental samples. Microbial pathogens have evolved sophisticated specialized transport systems, iron acquisition strategies to overcome its limitation, including siderophore production, uptake of heme and host iron-binding. These iron-scavenging systems are closely linked to the regulation of virulence traits such as adhesion, motility, toxin secretion, and biofilm formation. In ESKAPEE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp. and Escherichia coli), iron limitation enhances biofilm development, which protects bacteria from antibiotics and immune responses and promotes persistent infections. Even worse, pathogens can also manipulate host iron metabolism, exacerbating inflammation and disease progression. Although iron is indispensable for microbial growth, excessive intracellular iron promotes reactive oxygen species generation, causing oxidative damage and ferroptosis-like cell death. Understanding the dual role of iron as both a nutrient and a toxic agent highlights its importance in infection dynamics. We provide a critical overview of existing analytical techniques and emphasize the need for careful selection of methods to improve our understanding of microbial iron metabolism, host-pathogen interactions, and to support the development of new therapeutic and environmental monitoring strategies.
期刊介绍:
Much of contemporary investigation in the life sciences is devoted to the molecular-scale understanding of the relationships between genes and the environment — in particular, dynamic alterations in the levels, modifications, and interactions of cellular effectors, including proteins. Frontiers in Molecular Biosciences offers an international publication platform for basic as well as applied research; we encourage contributions spanning both established and emerging areas of biology. To this end, the journal draws from empirical disciplines such as structural biology, enzymology, biochemistry, and biophysics, capitalizing as well on the technological advancements that have enabled metabolomics and proteomics measurements in massively parallel throughput, and the development of robust and innovative computational biology strategies. We also recognize influences from medicine and technology, welcoming studies in molecular genetics, molecular diagnostics and therapeutics, and nanotechnology.
Our ultimate objective is the comprehensive illustration of the molecular mechanisms regulating proteins, nucleic acids, carbohydrates, lipids, and small metabolites in organisms across all branches of life.
In addition to interesting new findings, techniques, and applications, Frontiers in Molecular Biosciences will consider new testable hypotheses to inspire different perspectives and stimulate scientific dialogue. The integration of in silico, in vitro, and in vivo approaches will benefit endeavors across all domains of the life sciences.