利用调节的客观信息改进球面等效主观折射的估计。

IF 3.2 2区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Biomedical optics express Pub Date : 2025-07-16 eCollection Date: 2025-08-01 DOI:10.1364/BOE.562636
Aina Turull-Mallofré, Mikel Aldaba, Jaume Pujol, Carlos E García-Guerra
{"title":"利用调节的客观信息改进球面等效主观折射的估计。","authors":"Aina Turull-Mallofré, Mikel Aldaba, Jaume Pujol, Carlos E García-Guerra","doi":"10.1364/BOE.562636","DOIUrl":null,"url":null,"abstract":"<p><p>Machine learning and deep learning have previously been used to predict the subjective refraction endpoint by objective means with modest success. This study aimed to enhance predictive accuracy by training linear regression models with normal equations using accommodative response and optical quality data. Three models were tested on 176 eyes, with input variables obtained from a Hartmann-Shack aberrometer and an autorefractor. The best model reduced mean absolute error by 40% compared to the objective refraction provided by a commercial autorefractometer and achieved 95% limits of agreement with subjective refraction of ±0.54 D, approaching the subjective refraction inter-examiner variability. Incorporating accommodative response data improved prediction accuracy over objective refraction alone and previous approaches.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"16 8","pages":"3194-3205"},"PeriodicalIF":3.2000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12339300/pdf/","citationCount":"0","resultStr":"{\"title\":\"Improving the estimation of the spherical equivalent subjective refraction using objective information on accommodation.\",\"authors\":\"Aina Turull-Mallofré, Mikel Aldaba, Jaume Pujol, Carlos E García-Guerra\",\"doi\":\"10.1364/BOE.562636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Machine learning and deep learning have previously been used to predict the subjective refraction endpoint by objective means with modest success. This study aimed to enhance predictive accuracy by training linear regression models with normal equations using accommodative response and optical quality data. Three models were tested on 176 eyes, with input variables obtained from a Hartmann-Shack aberrometer and an autorefractor. The best model reduced mean absolute error by 40% compared to the objective refraction provided by a commercial autorefractometer and achieved 95% limits of agreement with subjective refraction of ±0.54 D, approaching the subjective refraction inter-examiner variability. Incorporating accommodative response data improved prediction accuracy over objective refraction alone and previous approaches.</p>\",\"PeriodicalId\":8969,\"journal\":{\"name\":\"Biomedical optics express\",\"volume\":\"16 8\",\"pages\":\"3194-3205\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12339300/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical optics express\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1364/BOE.562636\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/BOE.562636","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

机器学习和深度学习之前已经被用于通过客观手段预测主观折射终点,并取得了一定的成功。本研究旨在利用适应性响应和光学质量数据,通过训练具有正态方程的线性回归模型来提高预测精度。三个模型在176只眼睛上进行了测试,输入变量来自哈特曼-沙克像差计和自折射仪。与商用自动折射仪提供的物镜折射相比,最佳模型的平均绝对误差降低了40%,与主观折射(±0.54 D)的一致性达到95%,接近主观折射在检查人员之间的可变性。与单独的客观折射和以前的方法相比,结合适应性响应数据提高了预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving the estimation of the spherical equivalent subjective refraction using objective information on accommodation.

Machine learning and deep learning have previously been used to predict the subjective refraction endpoint by objective means with modest success. This study aimed to enhance predictive accuracy by training linear regression models with normal equations using accommodative response and optical quality data. Three models were tested on 176 eyes, with input variables obtained from a Hartmann-Shack aberrometer and an autorefractor. The best model reduced mean absolute error by 40% compared to the objective refraction provided by a commercial autorefractometer and achieved 95% limits of agreement with subjective refraction of ±0.54 D, approaching the subjective refraction inter-examiner variability. Incorporating accommodative response data improved prediction accuracy over objective refraction alone and previous approaches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical optics express
Biomedical optics express BIOCHEMICAL RESEARCH METHODS-OPTICS
CiteScore
6.80
自引率
11.80%
发文量
633
审稿时长
1 months
期刊介绍: The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including: Tissue optics and spectroscopy Novel microscopies Optical coherence tomography Diffuse and fluorescence tomography Photoacoustic and multimodal imaging Molecular imaging and therapies Nanophotonic biosensing Optical biophysics/photobiology Microfluidic optical devices Vision research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信