基于深度学习的Scheimpflug图像圆锥角膜检测。

IF 3.2 2区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Biomedical optics express Pub Date : 2025-07-07 eCollection Date: 2025-08-01 DOI:10.1364/BOE.559663
Juan Casado-Moreno, Belen Masia, Nanji Lu, Lele Cui, Alejandra Consejo
{"title":"基于深度学习的Scheimpflug图像圆锥角膜检测。","authors":"Juan Casado-Moreno, Belen Masia, Nanji Lu, Lele Cui, Alejandra Consejo","doi":"10.1364/BOE.559663","DOIUrl":null,"url":null,"abstract":"<p><p>This study evaluates the effectiveness of deep learning techniques applied to raw Scheimpflug corneal images for keratoconus detection, with a particular focus on forme fruste (FF) keratoconus, which refers to preclinical cases. Using an original dataset of 22,750 images from 910 eyes, a deep learning model based on transfer learning with a pre-trained VGG16 architecture was trained, incorporating specific preprocessing steps and data augmentation strategies. The proposed approach achieved an overall accuracy of 90.70%, with a sensitivity of 80.57%, and a specificity of 80.56% for FF keratoconus classification, and an AUC of 0.89. For clinical keratoconus, the model demonstrated a sensitivity of 93.28%, a specificity of 99.40%, and an AUC of 1.00. These findings highlight the potential of leveraging raw Scheimpflug images in deep learning-based keratoconus detection, particularly for identifying early-stage structural changes that may not be apparent in conventional topographic assessments.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"16 8","pages":"3047-3060"},"PeriodicalIF":3.2000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12339315/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deep learning-based keratoconus detection from Scheimpflug images.\",\"authors\":\"Juan Casado-Moreno, Belen Masia, Nanji Lu, Lele Cui, Alejandra Consejo\",\"doi\":\"10.1364/BOE.559663\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study evaluates the effectiveness of deep learning techniques applied to raw Scheimpflug corneal images for keratoconus detection, with a particular focus on forme fruste (FF) keratoconus, which refers to preclinical cases. Using an original dataset of 22,750 images from 910 eyes, a deep learning model based on transfer learning with a pre-trained VGG16 architecture was trained, incorporating specific preprocessing steps and data augmentation strategies. The proposed approach achieved an overall accuracy of 90.70%, with a sensitivity of 80.57%, and a specificity of 80.56% for FF keratoconus classification, and an AUC of 0.89. For clinical keratoconus, the model demonstrated a sensitivity of 93.28%, a specificity of 99.40%, and an AUC of 1.00. These findings highlight the potential of leveraging raw Scheimpflug images in deep learning-based keratoconus detection, particularly for identifying early-stage structural changes that may not be apparent in conventional topographic assessments.</p>\",\"PeriodicalId\":8969,\"journal\":{\"name\":\"Biomedical optics express\",\"volume\":\"16 8\",\"pages\":\"3047-3060\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12339315/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical optics express\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1364/BOE.559663\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/BOE.559663","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

本研究评估了深度学习技术应用于原始Scheimpflug角膜图像用于圆锥角膜检测的有效性,特别关注于临床前病例形成的结痂(FF)圆锥角膜。利用来自910只眼睛的22750张图像的原始数据集,训练了一个基于迁移学习的深度学习模型,该模型具有预训练的VGG16架构,包含特定的预处理步骤和数据增强策略。该方法对FF圆锥角膜分类的总体准确率为90.70%,灵敏度为80.57%,特异性为80.56%,AUC为0.89。对于临床圆锥角膜,该模型的敏感性为93.28%,特异性为99.40%,AUC为1.00。这些发现强调了在基于深度学习的圆锥角膜检测中利用原始Scheimpflug图像的潜力,特别是在识别传统地形评估中可能不明显的早期结构变化方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep learning-based keratoconus detection from Scheimpflug images.

This study evaluates the effectiveness of deep learning techniques applied to raw Scheimpflug corneal images for keratoconus detection, with a particular focus on forme fruste (FF) keratoconus, which refers to preclinical cases. Using an original dataset of 22,750 images from 910 eyes, a deep learning model based on transfer learning with a pre-trained VGG16 architecture was trained, incorporating specific preprocessing steps and data augmentation strategies. The proposed approach achieved an overall accuracy of 90.70%, with a sensitivity of 80.57%, and a specificity of 80.56% for FF keratoconus classification, and an AUC of 0.89. For clinical keratoconus, the model demonstrated a sensitivity of 93.28%, a specificity of 99.40%, and an AUC of 1.00. These findings highlight the potential of leveraging raw Scheimpflug images in deep learning-based keratoconus detection, particularly for identifying early-stage structural changes that may not be apparent in conventional topographic assessments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical optics express
Biomedical optics express BIOCHEMICAL RESEARCH METHODS-OPTICS
CiteScore
6.80
自引率
11.80%
发文量
633
审稿时长
1 months
期刊介绍: The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including: Tissue optics and spectroscopy Novel microscopies Optical coherence tomography Diffuse and fluorescence tomography Photoacoustic and multimodal imaging Molecular imaging and therapies Nanophotonic biosensing Optical biophysics/photobiology Microfluidic optical devices Vision research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信