Juan Casado-Moreno, Belen Masia, Nanji Lu, Lele Cui, Alejandra Consejo
{"title":"基于深度学习的Scheimpflug图像圆锥角膜检测。","authors":"Juan Casado-Moreno, Belen Masia, Nanji Lu, Lele Cui, Alejandra Consejo","doi":"10.1364/BOE.559663","DOIUrl":null,"url":null,"abstract":"<p><p>This study evaluates the effectiveness of deep learning techniques applied to raw Scheimpflug corneal images for keratoconus detection, with a particular focus on forme fruste (FF) keratoconus, which refers to preclinical cases. Using an original dataset of 22,750 images from 910 eyes, a deep learning model based on transfer learning with a pre-trained VGG16 architecture was trained, incorporating specific preprocessing steps and data augmentation strategies. The proposed approach achieved an overall accuracy of 90.70%, with a sensitivity of 80.57%, and a specificity of 80.56% for FF keratoconus classification, and an AUC of 0.89. For clinical keratoconus, the model demonstrated a sensitivity of 93.28%, a specificity of 99.40%, and an AUC of 1.00. These findings highlight the potential of leveraging raw Scheimpflug images in deep learning-based keratoconus detection, particularly for identifying early-stage structural changes that may not be apparent in conventional topographic assessments.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"16 8","pages":"3047-3060"},"PeriodicalIF":3.2000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12339315/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deep learning-based keratoconus detection from Scheimpflug images.\",\"authors\":\"Juan Casado-Moreno, Belen Masia, Nanji Lu, Lele Cui, Alejandra Consejo\",\"doi\":\"10.1364/BOE.559663\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study evaluates the effectiveness of deep learning techniques applied to raw Scheimpflug corneal images for keratoconus detection, with a particular focus on forme fruste (FF) keratoconus, which refers to preclinical cases. Using an original dataset of 22,750 images from 910 eyes, a deep learning model based on transfer learning with a pre-trained VGG16 architecture was trained, incorporating specific preprocessing steps and data augmentation strategies. The proposed approach achieved an overall accuracy of 90.70%, with a sensitivity of 80.57%, and a specificity of 80.56% for FF keratoconus classification, and an AUC of 0.89. For clinical keratoconus, the model demonstrated a sensitivity of 93.28%, a specificity of 99.40%, and an AUC of 1.00. These findings highlight the potential of leveraging raw Scheimpflug images in deep learning-based keratoconus detection, particularly for identifying early-stage structural changes that may not be apparent in conventional topographic assessments.</p>\",\"PeriodicalId\":8969,\"journal\":{\"name\":\"Biomedical optics express\",\"volume\":\"16 8\",\"pages\":\"3047-3060\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12339315/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical optics express\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1364/BOE.559663\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/BOE.559663","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Deep learning-based keratoconus detection from Scheimpflug images.
This study evaluates the effectiveness of deep learning techniques applied to raw Scheimpflug corneal images for keratoconus detection, with a particular focus on forme fruste (FF) keratoconus, which refers to preclinical cases. Using an original dataset of 22,750 images from 910 eyes, a deep learning model based on transfer learning with a pre-trained VGG16 architecture was trained, incorporating specific preprocessing steps and data augmentation strategies. The proposed approach achieved an overall accuracy of 90.70%, with a sensitivity of 80.57%, and a specificity of 80.56% for FF keratoconus classification, and an AUC of 0.89. For clinical keratoconus, the model demonstrated a sensitivity of 93.28%, a specificity of 99.40%, and an AUC of 1.00. These findings highlight the potential of leveraging raw Scheimpflug images in deep learning-based keratoconus detection, particularly for identifying early-stage structural changes that may not be apparent in conventional topographic assessments.
期刊介绍:
The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including:
Tissue optics and spectroscopy
Novel microscopies
Optical coherence tomography
Diffuse and fluorescence tomography
Photoacoustic and multimodal imaging
Molecular imaging and therapies
Nanophotonic biosensing
Optical biophysics/photobiology
Microfluidic optical devices
Vision research.