吸湿LiCl@MOF-Grafted可伸缩的太阳能大气集水纤维垫。

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-08-14 DOI:10.1002/smll.202504776
Yinxia Zheng, Qian Ding, Huiru Zhao, Bingqi Jin, Nan Sun, Xiao Shen, Haoxuan Li
{"title":"吸湿LiCl@MOF-Grafted可伸缩的太阳能大气集水纤维垫。","authors":"Yinxia Zheng, Qian Ding, Huiru Zhao, Bingqi Jin, Nan Sun, Xiao Shen, Haoxuan Li","doi":"10.1002/smll.202504776","DOIUrl":null,"url":null,"abstract":"<p><p>Solar-induced sorption-desorption based atmospheric water harvesting (SSDAWH) has emerged as a promising technology to mitigate global water scarcity through moisture capture across broad relative humidity (RH) ranges using advanced sorbents. While metal-organic frameworks (MOFs) have demonstrated exceptional potential in water capture applications, their practical implementation faces two critical challenges: the persistent gap between laboratory research and field deployment, and sluggish desorption kinetics that severely constrain SSDAWH system efficiency. To address these limitations, a novel MOF-303-LiCl composite integrated with reactive black dye-grafted fibrous mats (LiCl@MOF-chelated black viscose nonwoven mat, LMBVNM) is developed, creating a photothermal sorbent platform that enables rapid and complete moisture cycling. This engineered architecture achieves dual functionality: the fibrous mats substrate provides mechanical stability and mass transport channels for practical device integration, while the MOF-303-LiCl/dye system synergistically enhances both moisture capture capacity and solar-driven release kinetics. The system demonstrates exceptional performance with a record adsorption capacity of 4.95 g<sub>water</sub>·g<sub>adsorbent</sub> <sup>-1</sup> at 90% RH combined with 98.2% water recovery within 20 min under 1 sun illumination. Although MOF-303 is well-known in the materials community, the innovation lies in incorporating MOF-303 into reactive black dye-grafted commercial fibrous mats, paves the way for the large-scale practical application of MOFs in atmospheric water harvesting.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":" ","pages":"e04776"},"PeriodicalIF":12.1000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hygroscopic LiCl@MOF-Grafted Fibrous Mats for Scalable Solar-Powered Atmospheric Water Harvesting.\",\"authors\":\"Yinxia Zheng, Qian Ding, Huiru Zhao, Bingqi Jin, Nan Sun, Xiao Shen, Haoxuan Li\",\"doi\":\"10.1002/smll.202504776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Solar-induced sorption-desorption based atmospheric water harvesting (SSDAWH) has emerged as a promising technology to mitigate global water scarcity through moisture capture across broad relative humidity (RH) ranges using advanced sorbents. While metal-organic frameworks (MOFs) have demonstrated exceptional potential in water capture applications, their practical implementation faces two critical challenges: the persistent gap between laboratory research and field deployment, and sluggish desorption kinetics that severely constrain SSDAWH system efficiency. To address these limitations, a novel MOF-303-LiCl composite integrated with reactive black dye-grafted fibrous mats (LiCl@MOF-chelated black viscose nonwoven mat, LMBVNM) is developed, creating a photothermal sorbent platform that enables rapid and complete moisture cycling. This engineered architecture achieves dual functionality: the fibrous mats substrate provides mechanical stability and mass transport channels for practical device integration, while the MOF-303-LiCl/dye system synergistically enhances both moisture capture capacity and solar-driven release kinetics. The system demonstrates exceptional performance with a record adsorption capacity of 4.95 g<sub>water</sub>·g<sub>adsorbent</sub> <sup>-1</sup> at 90% RH combined with 98.2% water recovery within 20 min under 1 sun illumination. Although MOF-303 is well-known in the materials community, the innovation lies in incorporating MOF-303 into reactive black dye-grafted commercial fibrous mats, paves the way for the large-scale practical application of MOFs in atmospheric water harvesting.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\" \",\"pages\":\"e04776\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smll.202504776\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202504776","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

基于太阳诱导吸附-解吸的大气集水(SSDAWH)已经成为一项有前途的技术,通过使用先进的吸附剂在广泛的相对湿度(RH)范围内捕获水分,缓解全球水资源短缺。虽然金属有机框架(mof)在水捕获应用中表现出了非凡的潜力,但其实际实施面临两个关键挑战:实验室研究与现场部署之间的持续差距,以及严重制约SSDAWH系统效率的缓慢解吸动力学。为了解决这些限制,一种新型的MOF-303-LiCl复合材料与活性黑色染料接枝纤维垫(LiCl@MOF-chelated黑色粘胶非织造垫,LMBVNM)相结合,创造了一个光热吸收平台,实现快速和完整的水分循环。这种工程结构实现了双重功能:纤维垫衬底为实际设备集成提供了机械稳定性和质量传输通道,而MOF-303-LiCl/染料系统协同增强了水分捕获能力和太阳能驱动的释放动力学。该系统表现出优异的性能,在90%相对湿度下的吸附量为4.95 gwater·gadsorbent -1,在1个太阳光照下20分钟内的水回收率为98.2%。虽然MOF-303在材料界是众所周知的,但创新之处在于将MOF-303加入到活性黑色染料接枝的商业纤维垫中,为mof在大气集水中的大规模实际应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hygroscopic LiCl@MOF-Grafted Fibrous Mats for Scalable Solar-Powered Atmospheric Water Harvesting.

Solar-induced sorption-desorption based atmospheric water harvesting (SSDAWH) has emerged as a promising technology to mitigate global water scarcity through moisture capture across broad relative humidity (RH) ranges using advanced sorbents. While metal-organic frameworks (MOFs) have demonstrated exceptional potential in water capture applications, their practical implementation faces two critical challenges: the persistent gap between laboratory research and field deployment, and sluggish desorption kinetics that severely constrain SSDAWH system efficiency. To address these limitations, a novel MOF-303-LiCl composite integrated with reactive black dye-grafted fibrous mats (LiCl@MOF-chelated black viscose nonwoven mat, LMBVNM) is developed, creating a photothermal sorbent platform that enables rapid and complete moisture cycling. This engineered architecture achieves dual functionality: the fibrous mats substrate provides mechanical stability and mass transport channels for practical device integration, while the MOF-303-LiCl/dye system synergistically enhances both moisture capture capacity and solar-driven release kinetics. The system demonstrates exceptional performance with a record adsorption capacity of 4.95 gwater·gadsorbent -1 at 90% RH combined with 98.2% water recovery within 20 min under 1 sun illumination. Although MOF-303 is well-known in the materials community, the innovation lies in incorporating MOF-303 into reactive black dye-grafted commercial fibrous mats, paves the way for the large-scale practical application of MOFs in atmospheric water harvesting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信