miR172a-ERF416/413模块调控大豆种子性状。

IF 9.3 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Meng Jin, Jia-Qi Han, Lu-Yao Zhang, Zhi-Hao Jiang, Yue Liu, Jun-Jie Wei, Ling-Yi Zheng, Shang-Shang Xiong, Yang Hu, Tong Cheng, Xiao-Hua Bian, Chun-Mei Wu, Wei Wei, Yi-Hua Huang, Cui-Cui Yin, Feng Gao, Wei Li, Ying-Dong Bi, Yong-Cai Lai, Bin Zhou, De-Yue Yu, Shou-Yi Chen, Jian-Jun Tao, Wan-Ke Zhang, Jin-Song Zhang
{"title":"miR172a-ERF416/413模块调控大豆种子性状。","authors":"Meng Jin, Jia-Qi Han, Lu-Yao Zhang, Zhi-Hao Jiang, Yue Liu, Jun-Jie Wei, Ling-Yi Zheng, Shang-Shang Xiong, Yang Hu, Tong Cheng, Xiao-Hua Bian, Chun-Mei Wu, Wei Wei, Yi-Hua Huang, Cui-Cui Yin, Feng Gao, Wei Li, Ying-Dong Bi, Yong-Cai Lai, Bin Zhou, De-Yue Yu, Shou-Yi Chen, Jian-Jun Tao, Wan-Ke Zhang, Jin-Song Zhang","doi":"10.1111/jipb.70015","DOIUrl":null,"url":null,"abstract":"<p><p>Soybean (Glycine max) provides vegetable oils and proteins for human consumption. Its production depends on seeds and other production-related agronomic traits. How the seed traits are regulated in soybean remains largely unclear. In this study, we identified a miR172a-ERF416/413 module for the regulation of seed traits. The miR172a can cleave the targets ERF416 and ERF413 to affect the downstream gene expression for the reduction of soybean seed size and weight. Both the MIR172a-overexpressing transgenic soybean plants and the erf416/413 mutants produced smaller seeds than the control. Consistently, the ERF416-overexpressing transgenic soybean plants generated larger seeds. ERF416 and ERF413 were directly targeted to the promoter of GmKIX8-1 and GmSWEET10a to regulate their gene expression for seed size/weight control. Interestingly, the erf416/413 mutants showed higher seed yield per plant and higher total seed fatty acid (FA) content, whereas the MIR172a-transgenic soybean had lower total seed FA content compared with the control cultivar, suggesting that miR172a and ERF416/413 may function in FA accumulation through different pathways. Haplotypes of the ERF416 promoter region were further analyzed and Hap1 was correlated with higher gene expression and higher seed weight, while Hap3 was correlated with higher total seed lipid content. Our study revealed a new module for seed trait control. Manipulation of such alleles should facilitate breeding for high-oil and high-yield soybean cultivars.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The miR172a-ERF416/413 module regulates soybean seed traits.\",\"authors\":\"Meng Jin, Jia-Qi Han, Lu-Yao Zhang, Zhi-Hao Jiang, Yue Liu, Jun-Jie Wei, Ling-Yi Zheng, Shang-Shang Xiong, Yang Hu, Tong Cheng, Xiao-Hua Bian, Chun-Mei Wu, Wei Wei, Yi-Hua Huang, Cui-Cui Yin, Feng Gao, Wei Li, Ying-Dong Bi, Yong-Cai Lai, Bin Zhou, De-Yue Yu, Shou-Yi Chen, Jian-Jun Tao, Wan-Ke Zhang, Jin-Song Zhang\",\"doi\":\"10.1111/jipb.70015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Soybean (Glycine max) provides vegetable oils and proteins for human consumption. Its production depends on seeds and other production-related agronomic traits. How the seed traits are regulated in soybean remains largely unclear. In this study, we identified a miR172a-ERF416/413 module for the regulation of seed traits. The miR172a can cleave the targets ERF416 and ERF413 to affect the downstream gene expression for the reduction of soybean seed size and weight. Both the MIR172a-overexpressing transgenic soybean plants and the erf416/413 mutants produced smaller seeds than the control. Consistently, the ERF416-overexpressing transgenic soybean plants generated larger seeds. ERF416 and ERF413 were directly targeted to the promoter of GmKIX8-1 and GmSWEET10a to regulate their gene expression for seed size/weight control. Interestingly, the erf416/413 mutants showed higher seed yield per plant and higher total seed fatty acid (FA) content, whereas the MIR172a-transgenic soybean had lower total seed FA content compared with the control cultivar, suggesting that miR172a and ERF416/413 may function in FA accumulation through different pathways. Haplotypes of the ERF416 promoter region were further analyzed and Hap1 was correlated with higher gene expression and higher seed weight, while Hap3 was correlated with higher total seed lipid content. Our study revealed a new module for seed trait control. Manipulation of such alleles should facilitate breeding for high-oil and high-yield soybean cultivars.</p>\",\"PeriodicalId\":195,\"journal\":{\"name\":\"Journal of Integrative Plant Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2025-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Integrative Plant Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/jipb.70015\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/jipb.70015","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

大豆(甘氨酸max)为人类提供植物油和蛋白质。它的生产取决于种子和其他与生产有关的农艺性状。大豆的种子性状是如何调控的仍不清楚。在这项研究中,我们发现了一个miR172a-ERF416/413模块,用于调控种子性状。miR172a可切割靶点ERF416和ERF413,影响下游基因表达,降低大豆种子大小和重量。mir172a过表达的转基因大豆植株和erf416/413突变体产生的种子都比对照小。与此一致的是,过表达erf416的转基因大豆植株产生了更大的种子。ERF416和ERF413直接靶向GmKIX8-1和GmSWEET10a的启动子,调控其基因表达,控制种子大小/重量。有趣的是,erf416/413突变体表现出更高的单株种子产量和更高的种子总脂肪酸含量,而miR172a转基因大豆的种子总脂肪酸含量低于对照品种,这表明miR172a和erf416/413可能通过不同的途径发挥FA积累的作用。进一步分析ERF416启动子区域的单倍型,Hap1与较高的基因表达和较高的种子重相关,而Hap3与较高的种子总脂含量相关。我们的研究揭示了一个新的种子性状控制模块。对这些等位基因的操纵将有利于高油高产大豆品种的选育。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The miR172a-ERF416/413 module regulates soybean seed traits.

Soybean (Glycine max) provides vegetable oils and proteins for human consumption. Its production depends on seeds and other production-related agronomic traits. How the seed traits are regulated in soybean remains largely unclear. In this study, we identified a miR172a-ERF416/413 module for the regulation of seed traits. The miR172a can cleave the targets ERF416 and ERF413 to affect the downstream gene expression for the reduction of soybean seed size and weight. Both the MIR172a-overexpressing transgenic soybean plants and the erf416/413 mutants produced smaller seeds than the control. Consistently, the ERF416-overexpressing transgenic soybean plants generated larger seeds. ERF416 and ERF413 were directly targeted to the promoter of GmKIX8-1 and GmSWEET10a to regulate their gene expression for seed size/weight control. Interestingly, the erf416/413 mutants showed higher seed yield per plant and higher total seed fatty acid (FA) content, whereas the MIR172a-transgenic soybean had lower total seed FA content compared with the control cultivar, suggesting that miR172a and ERF416/413 may function in FA accumulation through different pathways. Haplotypes of the ERF416 promoter region were further analyzed and Hap1 was correlated with higher gene expression and higher seed weight, while Hap3 was correlated with higher total seed lipid content. Our study revealed a new module for seed trait control. Manipulation of such alleles should facilitate breeding for high-oil and high-yield soybean cultivars.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Integrative Plant Biology
Journal of Integrative Plant Biology 生物-生化与分子生物学
CiteScore
18.00
自引率
5.30%
发文量
220
审稿时长
3 months
期刊介绍: Journal of Integrative Plant Biology is a leading academic journal reporting on the latest discoveries in plant biology.Enjoy the latest news and developments in the field, understand new and improved methods and research tools, and explore basic biological questions through reproducible experimental design, using genetic, biochemical, cell and molecular biological methods, and statistical analyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信