E. L. Guzas, B. M. Casper, M. A. Babina, I. N. Chenwi, A. Shukla
{"title":"水下激波管内密封开孔泡沫的实验与计算模型","authors":"E. L. Guzas, B. M. Casper, M. A. Babina, I. N. Chenwi, A. Shukla","doi":"10.1007/s11340-025-01194-x","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Open cell foams have recently been used as a simulant for lung parenchyma to model underwater blast injury and thus the foam’s mechanical response characteristics are of interest to the underwater blast community.</p><h3>Objective</h3><p>The compressive response of a soft, sealed open cell foam (FlexFoam-iT! VIII) subjected to underwater hydrostatic pressure and shock is investigated through an experimental and computational study.</p><h3>Methods</h3><p>Real-time deformation of the foam during loading is captured via high-speed cameras, and a 3D digital image correlation technique calculates the foam’s transient volumetric strain. Fully coupled fluid–structure interaction (FSI) models of the experiments are developed for the FSI code Dynamic System Mechanics Advanced Simulation (DYSMAS), where the Arruda-Boyce hyperelastic model calculates the foam constitutive behavior.</p><h3>Results</h3><p>Simulated foam volumetric strains exhibit excellent correlation to shock test data. Hydrostatic experiments show that deformation of the sealed foam under hydrostatic compression is similar to the behavior of compressed air, until reaching volumetric strain levels exceeding 50%. Quasistatic DYSMAS simulations at numerous applied hydrostatic pressures produce volumetric strains between those measured in hydrostatic experiments with sealed foam (lower bound of strain at a given pressure) and in confined compression experiments with unsealed foam (upper bound).</p><h3>Conclusion</h3><p>The FSI modeling approach in DYSMAS showed a strong correlation with experimental results. Given this foam's prior successful use in a physical lung simulant, this computational approach is a good candidate for future modeling of human lung tissue response to underwater shock.</p></div>","PeriodicalId":552,"journal":{"name":"Experimental Mechanics","volume":"65 7","pages":"1097 - 1115"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11340-025-01194-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Experiments and Computational Modeling of a Sealed Open Cell Foam in an Underwater Shock Tube\",\"authors\":\"E. L. Guzas, B. M. Casper, M. A. Babina, I. N. Chenwi, A. Shukla\",\"doi\":\"10.1007/s11340-025-01194-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Open cell foams have recently been used as a simulant for lung parenchyma to model underwater blast injury and thus the foam’s mechanical response characteristics are of interest to the underwater blast community.</p><h3>Objective</h3><p>The compressive response of a soft, sealed open cell foam (FlexFoam-iT! VIII) subjected to underwater hydrostatic pressure and shock is investigated through an experimental and computational study.</p><h3>Methods</h3><p>Real-time deformation of the foam during loading is captured via high-speed cameras, and a 3D digital image correlation technique calculates the foam’s transient volumetric strain. Fully coupled fluid–structure interaction (FSI) models of the experiments are developed for the FSI code Dynamic System Mechanics Advanced Simulation (DYSMAS), where the Arruda-Boyce hyperelastic model calculates the foam constitutive behavior.</p><h3>Results</h3><p>Simulated foam volumetric strains exhibit excellent correlation to shock test data. Hydrostatic experiments show that deformation of the sealed foam under hydrostatic compression is similar to the behavior of compressed air, until reaching volumetric strain levels exceeding 50%. Quasistatic DYSMAS simulations at numerous applied hydrostatic pressures produce volumetric strains between those measured in hydrostatic experiments with sealed foam (lower bound of strain at a given pressure) and in confined compression experiments with unsealed foam (upper bound).</p><h3>Conclusion</h3><p>The FSI modeling approach in DYSMAS showed a strong correlation with experimental results. Given this foam's prior successful use in a physical lung simulant, this computational approach is a good candidate for future modeling of human lung tissue response to underwater shock.</p></div>\",\"PeriodicalId\":552,\"journal\":{\"name\":\"Experimental Mechanics\",\"volume\":\"65 7\",\"pages\":\"1097 - 1115\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11340-025-01194-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11340-025-01194-x\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11340-025-01194-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Experiments and Computational Modeling of a Sealed Open Cell Foam in an Underwater Shock Tube
Background
Open cell foams have recently been used as a simulant for lung parenchyma to model underwater blast injury and thus the foam’s mechanical response characteristics are of interest to the underwater blast community.
Objective
The compressive response of a soft, sealed open cell foam (FlexFoam-iT! VIII) subjected to underwater hydrostatic pressure and shock is investigated through an experimental and computational study.
Methods
Real-time deformation of the foam during loading is captured via high-speed cameras, and a 3D digital image correlation technique calculates the foam’s transient volumetric strain. Fully coupled fluid–structure interaction (FSI) models of the experiments are developed for the FSI code Dynamic System Mechanics Advanced Simulation (DYSMAS), where the Arruda-Boyce hyperelastic model calculates the foam constitutive behavior.
Results
Simulated foam volumetric strains exhibit excellent correlation to shock test data. Hydrostatic experiments show that deformation of the sealed foam under hydrostatic compression is similar to the behavior of compressed air, until reaching volumetric strain levels exceeding 50%. Quasistatic DYSMAS simulations at numerous applied hydrostatic pressures produce volumetric strains between those measured in hydrostatic experiments with sealed foam (lower bound of strain at a given pressure) and in confined compression experiments with unsealed foam (upper bound).
Conclusion
The FSI modeling approach in DYSMAS showed a strong correlation with experimental results. Given this foam's prior successful use in a physical lung simulant, this computational approach is a good candidate for future modeling of human lung tissue response to underwater shock.
期刊介绍:
Experimental Mechanics is the official journal of the Society for Experimental Mechanics that publishes papers in all areas of experimentation including its theoretical and computational analysis. The journal covers research in design and implementation of novel or improved experiments to characterize materials, structures and systems. Articles extending the frontiers of experimental mechanics at large and small scales are particularly welcome.
Coverage extends from research in solid and fluids mechanics to fields at the intersection of disciplines including physics, chemistry and biology. Development of new devices and technologies for metrology applications in a wide range of industrial sectors (e.g., manufacturing, high-performance materials, aerospace, information technology, medicine, energy and environmental technologies) is also covered.