Yanfei Cui , Minghua Zhang , Sijia Zhang , Yanli Cai , Yangang Qu , Lihua Luo
{"title":"双硫仑单独通过NF-κB通路调节肺癌放射敏感性,通过c-Myc靶向PD-L1调节放疗后免疫微环境","authors":"Yanfei Cui , Minghua Zhang , Sijia Zhang , Yanli Cai , Yangang Qu , Lihua Luo","doi":"10.1016/j.adcanc.2025.100149","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Lung cancer often develops resistance to radiotherapy (RT), which undermines its therapeutic efficacy. Disulfiram (DSF), a drug commonly used in the treatment of alcohol use disorders, has shown potential in inducing anti-tumor effects. However, its impact on radioresistance in lung cancer and its effects on the tumor immune microenvironment have not been fully elucidated.</div></div><div><h3>Methods</h3><div>Clonogenic assays, Rad51 foci formation, and a nude mouse model were employed to assess the impact of DSF on lung cancer radiosensitivity. Immune profiling was conducted using flow cytometry, and downstream mechanisms were investigated using RT-qPCR and Western blotting. The therapeutic effects of the combination of DSF, RT, and anti-PD-L1 antibody were further validated in a C57BL/6 mouse tumor model.</div></div><div><h3>Results</h3><div>DSF increased radiosensitivity in lung cancer cells, enhanced CD8<sup>+</sup> T cell infiltration, and upregulated PD-L1 expression through c-Myc. The combination of DSF, RT, and anti-PD-L1 antibody resulted in the most significant anti-tumor effects.</div></div><div><h3>Conclusions</h3><div>DSF effectively mitigates radioresistance in lung cancer and enhances the efficacy of radioimmunotherapy, offering a promising therapeutic strategy for improving treatment outcomes.</div></div>","PeriodicalId":72083,"journal":{"name":"Advances in cancer biology - metastasis","volume":"15 ","pages":"Article 100149"},"PeriodicalIF":3.0000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Disulfiram alone regulates the radiosensitivity of lung cancer through NF-κB pathway and regulates the immune microenvironment after radiotherapy by targeting PD-L1 through c-Myc\",\"authors\":\"Yanfei Cui , Minghua Zhang , Sijia Zhang , Yanli Cai , Yangang Qu , Lihua Luo\",\"doi\":\"10.1016/j.adcanc.2025.100149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Lung cancer often develops resistance to radiotherapy (RT), which undermines its therapeutic efficacy. Disulfiram (DSF), a drug commonly used in the treatment of alcohol use disorders, has shown potential in inducing anti-tumor effects. However, its impact on radioresistance in lung cancer and its effects on the tumor immune microenvironment have not been fully elucidated.</div></div><div><h3>Methods</h3><div>Clonogenic assays, Rad51 foci formation, and a nude mouse model were employed to assess the impact of DSF on lung cancer radiosensitivity. Immune profiling was conducted using flow cytometry, and downstream mechanisms were investigated using RT-qPCR and Western blotting. The therapeutic effects of the combination of DSF, RT, and anti-PD-L1 antibody were further validated in a C57BL/6 mouse tumor model.</div></div><div><h3>Results</h3><div>DSF increased radiosensitivity in lung cancer cells, enhanced CD8<sup>+</sup> T cell infiltration, and upregulated PD-L1 expression through c-Myc. The combination of DSF, RT, and anti-PD-L1 antibody resulted in the most significant anti-tumor effects.</div></div><div><h3>Conclusions</h3><div>DSF effectively mitigates radioresistance in lung cancer and enhances the efficacy of radioimmunotherapy, offering a promising therapeutic strategy for improving treatment outcomes.</div></div>\",\"PeriodicalId\":72083,\"journal\":{\"name\":\"Advances in cancer biology - metastasis\",\"volume\":\"15 \",\"pages\":\"Article 100149\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in cancer biology - metastasis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667394025000188\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in cancer biology - metastasis","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667394025000188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
Disulfiram alone regulates the radiosensitivity of lung cancer through NF-κB pathway and regulates the immune microenvironment after radiotherapy by targeting PD-L1 through c-Myc
Background
Lung cancer often develops resistance to radiotherapy (RT), which undermines its therapeutic efficacy. Disulfiram (DSF), a drug commonly used in the treatment of alcohol use disorders, has shown potential in inducing anti-tumor effects. However, its impact on radioresistance in lung cancer and its effects on the tumor immune microenvironment have not been fully elucidated.
Methods
Clonogenic assays, Rad51 foci formation, and a nude mouse model were employed to assess the impact of DSF on lung cancer radiosensitivity. Immune profiling was conducted using flow cytometry, and downstream mechanisms were investigated using RT-qPCR and Western blotting. The therapeutic effects of the combination of DSF, RT, and anti-PD-L1 antibody were further validated in a C57BL/6 mouse tumor model.
Results
DSF increased radiosensitivity in lung cancer cells, enhanced CD8+ T cell infiltration, and upregulated PD-L1 expression through c-Myc. The combination of DSF, RT, and anti-PD-L1 antibody resulted in the most significant anti-tumor effects.
Conclusions
DSF effectively mitigates radioresistance in lung cancer and enhances the efficacy of radioimmunotherapy, offering a promising therapeutic strategy for improving treatment outcomes.