Melisa L. Gimenez , Pablo Jimenez , Leonardo A. Pedraza Pérez , Diana Betancourth , Analia Zwick , Gonzalo A. Álvarez
{"title":"梯度波形调制对非均匀振荡梯度自旋回波序列微结构表征的优化及影响","authors":"Melisa L. Gimenez , Pablo Jimenez , Leonardo A. Pedraza Pérez , Diana Betancourth , Analia Zwick , Gonzalo A. Álvarez","doi":"10.1016/j.jmr.2025.107940","DOIUrl":null,"url":null,"abstract":"<div><div>Neurological diseases often result in changes at microscopic scales in the nervous system, emphasising the need for non-invasive imaging techniques that can quantify these alterations as potential biomarkers for diagnosis. Diffusion-weighted magnetic resonance imaging (DWI), particularly using modulated gradient spin-echo (MGSE) sequences, has significantly advanced in revealing tissue microstructure by probing molecular diffusion. Among the MGSE sequences, the Non-uniform Oscillating Gradient Spin-Echo (NOGSE) sequence generates a contrast based on selective microstructure sizes through a signal decay-shift, rather than probing conventional decay rates. In this study, we evaluate the performance of NOGSE in estimating microstructure sizes using a preclinical MRI scanner. Our results show that while sharp, instantaneous gradient modulations maximise the decay-shift, smooth gradient modulations still provide meaningful contrast. Through a combination of phantom experiments, numerical simulations and information-theoretic analysis, we optimise NOGSE parameters for accurate microstructural size estimation under both sharp and smooth gradient modulations. We identify optimal NOGSE parameters that are compatible with preclinical hardware constraints, providing reliable microstructure size characterisation. Especially smooth gradient modulations expand the range of compatible MRI scanners and are almost suitable for <em>in-vivo</em> applications. These findings represent a step toward developing quantitative imaging tools for probing microstructural features in diffusion-weighted magnetic resonance imaging.</div></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"380 ","pages":"Article 107940"},"PeriodicalIF":1.9000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimisation and impact of gradient waveform modulation on Non-uniform Oscillating Gradient Spin-Echo sequences for microstructural characterisation\",\"authors\":\"Melisa L. Gimenez , Pablo Jimenez , Leonardo A. Pedraza Pérez , Diana Betancourth , Analia Zwick , Gonzalo A. Álvarez\",\"doi\":\"10.1016/j.jmr.2025.107940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Neurological diseases often result in changes at microscopic scales in the nervous system, emphasising the need for non-invasive imaging techniques that can quantify these alterations as potential biomarkers for diagnosis. Diffusion-weighted magnetic resonance imaging (DWI), particularly using modulated gradient spin-echo (MGSE) sequences, has significantly advanced in revealing tissue microstructure by probing molecular diffusion. Among the MGSE sequences, the Non-uniform Oscillating Gradient Spin-Echo (NOGSE) sequence generates a contrast based on selective microstructure sizes through a signal decay-shift, rather than probing conventional decay rates. In this study, we evaluate the performance of NOGSE in estimating microstructure sizes using a preclinical MRI scanner. Our results show that while sharp, instantaneous gradient modulations maximise the decay-shift, smooth gradient modulations still provide meaningful contrast. Through a combination of phantom experiments, numerical simulations and information-theoretic analysis, we optimise NOGSE parameters for accurate microstructural size estimation under both sharp and smooth gradient modulations. We identify optimal NOGSE parameters that are compatible with preclinical hardware constraints, providing reliable microstructure size characterisation. Especially smooth gradient modulations expand the range of compatible MRI scanners and are almost suitable for <em>in-vivo</em> applications. These findings represent a step toward developing quantitative imaging tools for probing microstructural features in diffusion-weighted magnetic resonance imaging.</div></div>\",\"PeriodicalId\":16267,\"journal\":{\"name\":\"Journal of magnetic resonance\",\"volume\":\"380 \",\"pages\":\"Article 107940\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of magnetic resonance\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1090780725001120\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1090780725001120","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Optimisation and impact of gradient waveform modulation on Non-uniform Oscillating Gradient Spin-Echo sequences for microstructural characterisation
Neurological diseases often result in changes at microscopic scales in the nervous system, emphasising the need for non-invasive imaging techniques that can quantify these alterations as potential biomarkers for diagnosis. Diffusion-weighted magnetic resonance imaging (DWI), particularly using modulated gradient spin-echo (MGSE) sequences, has significantly advanced in revealing tissue microstructure by probing molecular diffusion. Among the MGSE sequences, the Non-uniform Oscillating Gradient Spin-Echo (NOGSE) sequence generates a contrast based on selective microstructure sizes through a signal decay-shift, rather than probing conventional decay rates. In this study, we evaluate the performance of NOGSE in estimating microstructure sizes using a preclinical MRI scanner. Our results show that while sharp, instantaneous gradient modulations maximise the decay-shift, smooth gradient modulations still provide meaningful contrast. Through a combination of phantom experiments, numerical simulations and information-theoretic analysis, we optimise NOGSE parameters for accurate microstructural size estimation under both sharp and smooth gradient modulations. We identify optimal NOGSE parameters that are compatible with preclinical hardware constraints, providing reliable microstructure size characterisation. Especially smooth gradient modulations expand the range of compatible MRI scanners and are almost suitable for in-vivo applications. These findings represent a step toward developing quantitative imaging tools for probing microstructural features in diffusion-weighted magnetic resonance imaging.
期刊介绍:
The Journal of Magnetic Resonance presents original technical and scientific papers in all aspects of magnetic resonance, including nuclear magnetic resonance spectroscopy (NMR) of solids and liquids, electron spin/paramagnetic resonance (EPR), in vivo magnetic resonance imaging (MRI) and spectroscopy (MRS), nuclear quadrupole resonance (NQR) and magnetic resonance phenomena at nearly zero fields or in combination with optics. The Journal''s main aims include deepening the physical principles underlying all these spectroscopies, publishing significant theoretical and experimental results leading to spectral and spatial progress in these areas, and opening new MR-based applications in chemistry, biology and medicine. The Journal also seeks descriptions of novel apparatuses, new experimental protocols, and new procedures of data analysis and interpretation - including computational and quantum-mechanical methods - capable of advancing MR spectroscopy and imaging.