城市PM2.5浓度监测:基于地面、卫星、模型和机器学习集成的最新进展综述

IF 6.9 2区 工程技术 Q1 ENVIRONMENTAL SCIENCES
Simone Lolli
{"title":"城市PM2.5浓度监测:基于地面、卫星、模型和机器学习集成的最新进展综述","authors":"Simone Lolli","doi":"10.1016/j.uclim.2025.102566","DOIUrl":null,"url":null,"abstract":"<div><div>Urban aerosols, especially fine particulate matter (PM<sub>2.5</sub>), significantly affect public health and environmental quality. Accurate high-resolution monitoring of PM<sub>2.5</sub> is essential for exposure assessment, regulatory enforcement, and policy development. This review synthesizes recent advances in the integration of ground-based observations, satellite remote sensing, Chemical Transport Models (CTMs), and Machine Learning (ML) techniques for characterizing the spatio-temporal distribution of urban aerosols. Ground-based sensors provide accurate surface-level measurements but lack broad spatial coverage. In contrast, satellite-retrieved Aerosol Optical Depth (AOD), proxy to retrieve PM<sub>2.5</sub> concentration at surface, offers extensive coverage, but with limitations related to cloud cover and temporal resolution. CTMs provide continuous 3D aerosol fields, though their accuracy is limited by uncertainties in emissions and meteorology. ML algorithms effectively integrate these heterogeneous data sources, capture complex nonlinear relationships, and improve PM<sub>2.5</sub> predictions. Case studies from multiple global regions demonstrate that integrated approaches achieve high accuracy (cross-validated <span><math><mrow><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>≈</mo><mn>0</mn><mo>.</mo><mn>80</mn></mrow></math></span>, Root Mean Square Error 2.5–<span><math><mrow><mn>3</mn><mo>.</mo><mn>0</mn><mspace></mspace><mi>μ</mi><mi>g</mi></mrow></math></span>/m<span><math><msup><mrow></mrow><mrow><mn>3</mn></mrow></msup></math></span>, Mean Absolute Error 2.1–<span><math><mrow><mn>2</mn><mo>.</mo><mn>7</mn><mspace></mspace><mi>μ</mi><mi>g</mi></mrow></math></span>/m<span><math><msup><mrow></mrow><mrow><mn>3</mn></mrow></msup></math></span>), enabling daily exposure estimates at fine spatial scales. These synergistic methods are increasingly being used in air quality policies, health risk assessments, and regulatory frameworks. Future directions include the development of physics-informed ML models, the deployment of Internet of Things (IoT)-enabled sensor networks, and the establishment of standardized uncertainty quantification frameworks. This review is intended for researchers and policy makers seeking a state-of-the-art perspective on urban aerosol monitoring.</div></div>","PeriodicalId":48626,"journal":{"name":"Urban Climate","volume":"63 ","pages":"Article 102566"},"PeriodicalIF":6.9000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Urban PM2.5 concentration monitoring: A review of recent advances in ground-based, satellite, model, and machine learning integration\",\"authors\":\"Simone Lolli\",\"doi\":\"10.1016/j.uclim.2025.102566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Urban aerosols, especially fine particulate matter (PM<sub>2.5</sub>), significantly affect public health and environmental quality. Accurate high-resolution monitoring of PM<sub>2.5</sub> is essential for exposure assessment, regulatory enforcement, and policy development. This review synthesizes recent advances in the integration of ground-based observations, satellite remote sensing, Chemical Transport Models (CTMs), and Machine Learning (ML) techniques for characterizing the spatio-temporal distribution of urban aerosols. Ground-based sensors provide accurate surface-level measurements but lack broad spatial coverage. In contrast, satellite-retrieved Aerosol Optical Depth (AOD), proxy to retrieve PM<sub>2.5</sub> concentration at surface, offers extensive coverage, but with limitations related to cloud cover and temporal resolution. CTMs provide continuous 3D aerosol fields, though their accuracy is limited by uncertainties in emissions and meteorology. ML algorithms effectively integrate these heterogeneous data sources, capture complex nonlinear relationships, and improve PM<sub>2.5</sub> predictions. Case studies from multiple global regions demonstrate that integrated approaches achieve high accuracy (cross-validated <span><math><mrow><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>≈</mo><mn>0</mn><mo>.</mo><mn>80</mn></mrow></math></span>, Root Mean Square Error 2.5–<span><math><mrow><mn>3</mn><mo>.</mo><mn>0</mn><mspace></mspace><mi>μ</mi><mi>g</mi></mrow></math></span>/m<span><math><msup><mrow></mrow><mrow><mn>3</mn></mrow></msup></math></span>, Mean Absolute Error 2.1–<span><math><mrow><mn>2</mn><mo>.</mo><mn>7</mn><mspace></mspace><mi>μ</mi><mi>g</mi></mrow></math></span>/m<span><math><msup><mrow></mrow><mrow><mn>3</mn></mrow></msup></math></span>), enabling daily exposure estimates at fine spatial scales. These synergistic methods are increasingly being used in air quality policies, health risk assessments, and regulatory frameworks. Future directions include the development of physics-informed ML models, the deployment of Internet of Things (IoT)-enabled sensor networks, and the establishment of standardized uncertainty quantification frameworks. This review is intended for researchers and policy makers seeking a state-of-the-art perspective on urban aerosol monitoring.</div></div>\",\"PeriodicalId\":48626,\"journal\":{\"name\":\"Urban Climate\",\"volume\":\"63 \",\"pages\":\"Article 102566\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Urban Climate\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212095525002822\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urban Climate","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212095525002822","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

城市气溶胶,特别是细颗粒物(PM2.5),严重影响公众健康和环境质量。准确的高分辨率PM2.5监测对暴露评估、监管执法和政策制定至关重要。本文综述了地面观测、卫星遥感、化学传输模型(CTMs)和机器学习(ML)技术在表征城市气溶胶时空分布方面的最新进展。地面传感器提供精确的地表测量,但缺乏广泛的空间覆盖。相比之下,卫星反演的气溶胶光学深度(AOD)作为反演地表PM2.5浓度的代理,提供了广泛的覆盖范围,但在云量和时间分辨率方面存在局限性。CTMs提供连续的三维气溶胶场,尽管其精度受到排放和气象不确定性的限制。机器学习算法有效地整合这些异构数据源,捕捉复杂的非线性关系,并改进PM2.5预测。来自全球多个地区的案例研究表明,综合方法具有很高的精度(交叉验证的R2≈0.80,均方根误差2.5-3.0μg /m3,平均绝对误差2.1-2.7μg /m3),可以在精细空间尺度上估计每日暴露。这些协同方法正越来越多地用于空气质量政策、健康风险评估和监管框架。未来的发展方向包括开发基于物理的机器学习模型,部署支持物联网(IoT)的传感器网络,以及建立标准化的不确定性量化框架。这篇综述旨在为研究人员和政策制定者寻求最先进的城市气溶胶监测的观点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Urban PM2.5 concentration monitoring: A review of recent advances in ground-based, satellite, model, and machine learning integration
Urban aerosols, especially fine particulate matter (PM2.5), significantly affect public health and environmental quality. Accurate high-resolution monitoring of PM2.5 is essential for exposure assessment, regulatory enforcement, and policy development. This review synthesizes recent advances in the integration of ground-based observations, satellite remote sensing, Chemical Transport Models (CTMs), and Machine Learning (ML) techniques for characterizing the spatio-temporal distribution of urban aerosols. Ground-based sensors provide accurate surface-level measurements but lack broad spatial coverage. In contrast, satellite-retrieved Aerosol Optical Depth (AOD), proxy to retrieve PM2.5 concentration at surface, offers extensive coverage, but with limitations related to cloud cover and temporal resolution. CTMs provide continuous 3D aerosol fields, though their accuracy is limited by uncertainties in emissions and meteorology. ML algorithms effectively integrate these heterogeneous data sources, capture complex nonlinear relationships, and improve PM2.5 predictions. Case studies from multiple global regions demonstrate that integrated approaches achieve high accuracy (cross-validated R20.80, Root Mean Square Error 2.5–3.0μg/m3, Mean Absolute Error 2.1–2.7μg/m3), enabling daily exposure estimates at fine spatial scales. These synergistic methods are increasingly being used in air quality policies, health risk assessments, and regulatory frameworks. Future directions include the development of physics-informed ML models, the deployment of Internet of Things (IoT)-enabled sensor networks, and the establishment of standardized uncertainty quantification frameworks. This review is intended for researchers and policy makers seeking a state-of-the-art perspective on urban aerosol monitoring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Urban Climate
Urban Climate Social Sciences-Urban Studies
CiteScore
9.70
自引率
9.40%
发文量
286
期刊介绍: Urban Climate serves the scientific and decision making communities with the publication of research on theory, science and applications relevant to understanding urban climatic conditions and change in relation to their geography and to demographic, socioeconomic, institutional, technological and environmental dynamics and global change. Targeted towards both disciplinary and interdisciplinary audiences, this journal publishes original research papers, comprehensive review articles, book reviews, and short communications on topics including, but not limited to, the following: Urban meteorology and climate[...] Urban environmental pollution[...] Adaptation to global change[...] Urban economic and social issues[...] Research Approaches[...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信