{"title":"关于半线性常微分方程特定非振动解存在性的一个注解","authors":"Manabu Naito , Hiroyuki Usami","doi":"10.1016/j.aml.2025.109714","DOIUrl":null,"url":null,"abstract":"<div><div>The half-linear ordinary differential equation <span><span><span><math><mrow><msup><mrow><mrow><mo>(</mo><msup><mrow><mrow><mo>|</mo><msup><mrow><mi>u</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>|</mo></mrow></mrow><mrow><mi>α</mi></mrow></msup><mi>sgn</mi><mspace></mspace><msup><mrow><mi>u</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo></mrow></mrow><mrow><mo>′</mo></mrow></msup><mo>=</mo><mi>α</mi><mrow><mo>(</mo><msup><mrow><mi>λ</mi></mrow><mrow><mi>α</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>+</mo><mi>b</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>)</mo></mrow><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>α</mi></mrow></msup><mi>sgn</mi><mspace></mspace><mi>u</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>≥</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo></mrow></math></span></span></span>is considered. Here, <span><math><mi>α</mi></math></span> and <span><math><mi>λ</mi></math></span> are positive constants, and <span><math><mrow><mi>b</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> is a real-valued continuous function on <span><math><mrow><mo>[</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></math></span> and does not change sign for sufficiently large <span><math><mi>t</mi></math></span>. It is shown that, under the assumption <span><math><mrow><mn>0</mn><mo><</mo><mi>α</mi><mo>≤</mo><mn>1</mn></mrow></math></span>, if the above equation has a solution <span><math><mrow><mi>u</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> which behaves like <span><math><msup><mrow><mi>e</mi></mrow><mrow><mi>λ</mi><mi>t</mi></mrow></msup></math></span> or <span><math><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><mi>λ</mi><mi>t</mi></mrow></msup></math></span> as <span><math><mrow><mi>t</mi><mo>→</mo><mi>∞</mi></mrow></math></span>, then <span><math><mrow><mi>b</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> is absolutely integrable on <span><math><mrow><mo>[</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></math></span>.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"172 ","pages":"Article 109714"},"PeriodicalIF":2.8000,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A remark on the existence of specific nonoscillatory solutions of half-linear ordinary differential equations\",\"authors\":\"Manabu Naito , Hiroyuki Usami\",\"doi\":\"10.1016/j.aml.2025.109714\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The half-linear ordinary differential equation <span><span><span><math><mrow><msup><mrow><mrow><mo>(</mo><msup><mrow><mrow><mo>|</mo><msup><mrow><mi>u</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>|</mo></mrow></mrow><mrow><mi>α</mi></mrow></msup><mi>sgn</mi><mspace></mspace><msup><mrow><mi>u</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo></mrow></mrow><mrow><mo>′</mo></mrow></msup><mo>=</mo><mi>α</mi><mrow><mo>(</mo><msup><mrow><mi>λ</mi></mrow><mrow><mi>α</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>+</mo><mi>b</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>)</mo></mrow><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>α</mi></mrow></msup><mi>sgn</mi><mspace></mspace><mi>u</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>≥</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo></mrow></math></span></span></span>is considered. Here, <span><math><mi>α</mi></math></span> and <span><math><mi>λ</mi></math></span> are positive constants, and <span><math><mrow><mi>b</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> is a real-valued continuous function on <span><math><mrow><mo>[</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></math></span> and does not change sign for sufficiently large <span><math><mi>t</mi></math></span>. It is shown that, under the assumption <span><math><mrow><mn>0</mn><mo><</mo><mi>α</mi><mo>≤</mo><mn>1</mn></mrow></math></span>, if the above equation has a solution <span><math><mrow><mi>u</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> which behaves like <span><math><msup><mrow><mi>e</mi></mrow><mrow><mi>λ</mi><mi>t</mi></mrow></msup></math></span> or <span><math><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><mi>λ</mi><mi>t</mi></mrow></msup></math></span> as <span><math><mrow><mi>t</mi><mo>→</mo><mi>∞</mi></mrow></math></span>, then <span><math><mrow><mi>b</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> is absolutely integrable on <span><math><mrow><mo>[</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></math></span>.</div></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"172 \",\"pages\":\"Article 109714\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965925002642\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965925002642","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A remark on the existence of specific nonoscillatory solutions of half-linear ordinary differential equations
The half-linear ordinary differential equation is considered. Here, and are positive constants, and is a real-valued continuous function on and does not change sign for sufficiently large . It is shown that, under the assumption , if the above equation has a solution which behaves like or as , then is absolutely integrable on .
期刊介绍:
The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.