具有弯曲界面的椭圆界面问题的边界修正弱Galerkin混合有限方法

IF 2.4 2区 数学 Q1 MATHEMATICS, APPLIED
Yongli Hou , Yi Liu , Yanqiu Wang
{"title":"具有弯曲界面的椭圆界面问题的边界修正弱Galerkin混合有限方法","authors":"Yongli Hou ,&nbsp;Yi Liu ,&nbsp;Yanqiu Wang","doi":"10.1016/j.apnum.2025.08.001","DOIUrl":null,"url":null,"abstract":"<div><div>We propose a boundary-corrected weak Galerkin mixed finite element method for solving elliptic interface problems in 2D domains with curved interfaces. The method is formulated on body-fitted polygonal meshes, where interface edges are straight and may not align exactly with the curved physical interface. To address this discrepancy, a boundary value correction technique is employed to transfer the interface conditions from the physical interface to the approximate interface using a Taylor expansion approach. The Neumann interface condition is then weakly imposed in the variational formulation. This approach eliminates the need for numerical integration on curved elements, thereby reducing implementation complexity. We establish optimal-order convergence in the energy norm for arbitrary-order discretizations. Numerical results are provided to support the theoretical findings.</div></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"218 ","pages":"Pages 201-219"},"PeriodicalIF":2.4000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A boundary-corrected weak Galerkin mixed finite method for elliptic interface problems with curved interfaces\",\"authors\":\"Yongli Hou ,&nbsp;Yi Liu ,&nbsp;Yanqiu Wang\",\"doi\":\"10.1016/j.apnum.2025.08.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We propose a boundary-corrected weak Galerkin mixed finite element method for solving elliptic interface problems in 2D domains with curved interfaces. The method is formulated on body-fitted polygonal meshes, where interface edges are straight and may not align exactly with the curved physical interface. To address this discrepancy, a boundary value correction technique is employed to transfer the interface conditions from the physical interface to the approximate interface using a Taylor expansion approach. The Neumann interface condition is then weakly imposed in the variational formulation. This approach eliminates the need for numerical integration on curved elements, thereby reducing implementation complexity. We establish optimal-order convergence in the energy norm for arbitrary-order discretizations. Numerical results are provided to support the theoretical findings.</div></div>\",\"PeriodicalId\":8199,\"journal\":{\"name\":\"Applied Numerical Mathematics\",\"volume\":\"218 \",\"pages\":\"Pages 201-219\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927425001576\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927425001576","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种边界修正的弱Galerkin混合有限元方法,用于求解具有曲面界面的二维区域中的椭圆界面问题。该方法是在贴体多边形网格上制定的,其中界面边缘是直的,可能与弯曲的物理界面不完全对齐。为了解决这种差异,采用边界值校正技术,使用泰勒展开方法将界面条件从物理界面转移到近似界面。然后在变分公式中弱地施加诺伊曼界面条件。这种方法消除了对曲面元素进行数值积分的需要,从而降低了实现的复杂性。建立了任意阶离散化的能量范数的最优阶收敛性。数值结果支持了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A boundary-corrected weak Galerkin mixed finite method for elliptic interface problems with curved interfaces
We propose a boundary-corrected weak Galerkin mixed finite element method for solving elliptic interface problems in 2D domains with curved interfaces. The method is formulated on body-fitted polygonal meshes, where interface edges are straight and may not align exactly with the curved physical interface. To address this discrepancy, a boundary value correction technique is employed to transfer the interface conditions from the physical interface to the approximate interface using a Taylor expansion approach. The Neumann interface condition is then weakly imposed in the variational formulation. This approach eliminates the need for numerical integration on curved elements, thereby reducing implementation complexity. We establish optimal-order convergence in the energy norm for arbitrary-order discretizations. Numerical results are provided to support the theoretical findings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Numerical Mathematics
Applied Numerical Mathematics 数学-应用数学
CiteScore
5.60
自引率
7.10%
发文量
225
审稿时长
7.2 months
期刊介绍: The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are: (i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments. (ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers. (iii) Short notes, which present specific new results and techniques in a brief communication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信