具有吸引非线性的Riesz分数阶非线性Schrödinger方程的基于正弦变换的快速求解器

IF 3.4 2区 数学 Q1 MATHEMATICS, APPLIED
Chao Chen , Xi Yang , Fei-Yan Zhang
{"title":"具有吸引非线性的Riesz分数阶非线性Schrödinger方程的基于正弦变换的快速求解器","authors":"Chao Chen ,&nbsp;Xi Yang ,&nbsp;Fei-Yan Zhang","doi":"10.1016/j.amc.2025.129674","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents fast solvers for linear systems arising from the discretization of fractional nonlinear Schrödinger equations with Riesz derivatives and attractive nonlinearities. These systems exhibit complex symmetry, indefiniteness, and a <span><math><mi>d</mi></math></span>-level diagonal-plus-Toeplitz structure. We propose a Toeplitz-based anti-symmetric and normal splitting iteration method for the equivalent real block linear systems, ensuring unconditional convergence. By integrating this iteration method with sine-transform-based preconditioning, we introduce a novel preconditioner that enhances the convergence rate of Krylov subspace methods. Both theoretical and numerical analyses demonstrate that the new preconditioner exhibits a parameter-free property, and favorable eigenvalue clustering nature of the corresponding preconditioned coefficient matrix, and the associated preconditioned GMRES method converges independently of the mesh size in space and the order of Riesz fractional derivatives.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"510 ","pages":"Article 129674"},"PeriodicalIF":3.4000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sine-transform-based fast solvers for Riesz fractional nonlinear Schrödinger equations with attractive nonlinearities\",\"authors\":\"Chao Chen ,&nbsp;Xi Yang ,&nbsp;Fei-Yan Zhang\",\"doi\":\"10.1016/j.amc.2025.129674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents fast solvers for linear systems arising from the discretization of fractional nonlinear Schrödinger equations with Riesz derivatives and attractive nonlinearities. These systems exhibit complex symmetry, indefiniteness, and a <span><math><mi>d</mi></math></span>-level diagonal-plus-Toeplitz structure. We propose a Toeplitz-based anti-symmetric and normal splitting iteration method for the equivalent real block linear systems, ensuring unconditional convergence. By integrating this iteration method with sine-transform-based preconditioning, we introduce a novel preconditioner that enhances the convergence rate of Krylov subspace methods. Both theoretical and numerical analyses demonstrate that the new preconditioner exhibits a parameter-free property, and favorable eigenvalue clustering nature of the corresponding preconditioned coefficient matrix, and the associated preconditioned GMRES method converges independently of the mesh size in space and the order of Riesz fractional derivatives.</div></div>\",\"PeriodicalId\":55496,\"journal\":{\"name\":\"Applied Mathematics and Computation\",\"volume\":\"510 \",\"pages\":\"Article 129674\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S009630032500400X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009630032500400X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了具有Riesz导数和吸引非线性的分数阶非线性Schrödinger方程离散化引起的线性系统的快速解。这些系统表现出复杂的对称性、不确定性和d级对角线+ toeplitz结构。针对等价实数块线性系统,提出了一种基于toeplitz的反对称法分裂迭代方法,保证了系统的无条件收敛性。通过将该迭代方法与基于正弦变换的预条件相结合,引入了一种新的预条件,提高了Krylov子空间方法的收敛速度。理论分析和数值分析表明,该预条件具有无参数性,且相应预条件系数矩阵具有良好的特征值聚类性,且该预条件GMRES方法的收敛性与网格大小和Riesz分数阶导数阶数无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sine-transform-based fast solvers for Riesz fractional nonlinear Schrödinger equations with attractive nonlinearities
This paper presents fast solvers for linear systems arising from the discretization of fractional nonlinear Schrödinger equations with Riesz derivatives and attractive nonlinearities. These systems exhibit complex symmetry, indefiniteness, and a d-level diagonal-plus-Toeplitz structure. We propose a Toeplitz-based anti-symmetric and normal splitting iteration method for the equivalent real block linear systems, ensuring unconditional convergence. By integrating this iteration method with sine-transform-based preconditioning, we introduce a novel preconditioner that enhances the convergence rate of Krylov subspace methods. Both theoretical and numerical analyses demonstrate that the new preconditioner exhibits a parameter-free property, and favorable eigenvalue clustering nature of the corresponding preconditioned coefficient matrix, and the associated preconditioned GMRES method converges independently of the mesh size in space and the order of Riesz fractional derivatives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信