多源合并降水产品的独立标准观测比较

IF 4.4 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Huiwen Zhang , Lingna Wei , Ying Zhu , Jianhong Zhou , Songyan Liu , Xiaosong Sun , Xiaoqi Kang , Man Gao , Zheng Duan , Wade T. Crow , Jianzhi Dong
{"title":"多源合并降水产品的独立标准观测比较","authors":"Huiwen Zhang ,&nbsp;Lingna Wei ,&nbsp;Ying Zhu ,&nbsp;Jianhong Zhou ,&nbsp;Songyan Liu ,&nbsp;Xiaosong Sun ,&nbsp;Xiaoqi Kang ,&nbsp;Man Gao ,&nbsp;Zheng Duan ,&nbsp;Wade T. Crow ,&nbsp;Jianzhi Dong","doi":"10.1016/j.atmosres.2025.108427","DOIUrl":null,"url":null,"abstract":"<div><div>Data merging is widely applied to improve large-scale precipitation estimates. However, traditional merging algorithms rely heavily on gauge observations and suffer from increased uncertainties in data-sparse regions. Statistical uncertainty analysis (SUA) offers a potential solution by estimating merging weights analytically and thereby reducing dependence on gauge data. However, the comparative effectiveness of SUA-merged and traditional gauge-merged precipitation datasets remains unclear, largely due to the scarcity of truly independent validation data. Here, using 268 wholly independent rain gauges, we show that SUA-based merging can effectively suppress random errors and outperform remote sensing and reanalysis products. Notably, compared to traditional gauge-merged datasets, SUA-merged precipitation demonstrates averagely stronger correlation with independent observations and lower root-mean-square errors. These results provide direct evidence for the ability of SUA to mitigate reliance on gauge data, especially in observation-scarce regions. However, SUA-merged products still show limitations with regards to accurately classifying rain/no-rain events, highlighting the need for future enhancements targeting false precipitation detection.</div></div>","PeriodicalId":8600,"journal":{"name":"Atmospheric Research","volume":"328 ","pages":"Article 108427"},"PeriodicalIF":4.4000,"publicationDate":"2025-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of multi-source merged precipitation products using independent gauge observations\",\"authors\":\"Huiwen Zhang ,&nbsp;Lingna Wei ,&nbsp;Ying Zhu ,&nbsp;Jianhong Zhou ,&nbsp;Songyan Liu ,&nbsp;Xiaosong Sun ,&nbsp;Xiaoqi Kang ,&nbsp;Man Gao ,&nbsp;Zheng Duan ,&nbsp;Wade T. Crow ,&nbsp;Jianzhi Dong\",\"doi\":\"10.1016/j.atmosres.2025.108427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Data merging is widely applied to improve large-scale precipitation estimates. However, traditional merging algorithms rely heavily on gauge observations and suffer from increased uncertainties in data-sparse regions. Statistical uncertainty analysis (SUA) offers a potential solution by estimating merging weights analytically and thereby reducing dependence on gauge data. However, the comparative effectiveness of SUA-merged and traditional gauge-merged precipitation datasets remains unclear, largely due to the scarcity of truly independent validation data. Here, using 268 wholly independent rain gauges, we show that SUA-based merging can effectively suppress random errors and outperform remote sensing and reanalysis products. Notably, compared to traditional gauge-merged datasets, SUA-merged precipitation demonstrates averagely stronger correlation with independent observations and lower root-mean-square errors. These results provide direct evidence for the ability of SUA to mitigate reliance on gauge data, especially in observation-scarce regions. However, SUA-merged products still show limitations with regards to accurately classifying rain/no-rain events, highlighting the need for future enhancements targeting false precipitation detection.</div></div>\",\"PeriodicalId\":8600,\"journal\":{\"name\":\"Atmospheric Research\",\"volume\":\"328 \",\"pages\":\"Article 108427\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169809525005198\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169809525005198","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

数据合并被广泛应用于改进大尺度降水估计。然而,传统的合并算法严重依赖于测量观测,并且在数据稀疏区域存在较大的不确定性。统计不确定性分析(SUA)提供了一个潜在的解决方案,通过分析估计合并权值,从而减少对测量数据的依赖。然而,由于缺乏真正独立的验证数据,sua合并和传统的测量合并降水数据集的比较有效性仍然不清楚。通过268个完全独立的雨量计,我们发现基于sua的合并可以有效地抑制随机误差,并且优于遥感和再分析产品。值得注意的是,与传统的量规合并数据集相比,sua合并降水与独立观测数据的相关性平均较强,均方根误差较低。这些结果为SUA减轻对测量数据依赖的能力提供了直接证据,特别是在观测稀缺的地区。然而,与sua合并的产品在准确分类降雨/无雨事件方面仍然存在局限性,这突出了未来针对虚假降水检测的增强需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of multi-source merged precipitation products using independent gauge observations
Data merging is widely applied to improve large-scale precipitation estimates. However, traditional merging algorithms rely heavily on gauge observations and suffer from increased uncertainties in data-sparse regions. Statistical uncertainty analysis (SUA) offers a potential solution by estimating merging weights analytically and thereby reducing dependence on gauge data. However, the comparative effectiveness of SUA-merged and traditional gauge-merged precipitation datasets remains unclear, largely due to the scarcity of truly independent validation data. Here, using 268 wholly independent rain gauges, we show that SUA-based merging can effectively suppress random errors and outperform remote sensing and reanalysis products. Notably, compared to traditional gauge-merged datasets, SUA-merged precipitation demonstrates averagely stronger correlation with independent observations and lower root-mean-square errors. These results provide direct evidence for the ability of SUA to mitigate reliance on gauge data, especially in observation-scarce regions. However, SUA-merged products still show limitations with regards to accurately classifying rain/no-rain events, highlighting the need for future enhancements targeting false precipitation detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atmospheric Research
Atmospheric Research 地学-气象与大气科学
CiteScore
9.40
自引率
10.90%
发文量
460
审稿时长
47 days
期刊介绍: The journal publishes scientific papers (research papers, review articles, letters and notes) dealing with the part of the atmosphere where meteorological events occur. Attention is given to all processes extending from the earth surface to the tropopause, but special emphasis continues to be devoted to the physics of clouds, mesoscale meteorology and air pollution, i.e. atmospheric aerosols; microphysical processes; cloud dynamics and thermodynamics; numerical simulation, climatology, climate change and weather modification.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信