一种激光低碳排放的火法冶金方法,通过硅热还原回收锂离子电池

IF 8.1 Q1 ENGINEERING, ENVIRONMENTAL
James Chen, Ruby Zhang, Maciej Podlesny, Tyler Smith, Chao Shi, Jian Li
{"title":"一种激光低碳排放的火法冶金方法,通过硅热还原回收锂离子电池","authors":"James Chen,&nbsp;Ruby Zhang,&nbsp;Maciej Podlesny,&nbsp;Tyler Smith,&nbsp;Chao Shi,&nbsp;Jian Li","doi":"10.1016/j.hazl.2025.100160","DOIUrl":null,"url":null,"abstract":"<div><div>In response to the growing shift from graphite to silicon in Li-ion battery anodes, we propose a novel low-carbon pyrometallurgical recycling method that uses silicon as the reducing agent. Silicon was chosen as the reductant because, as the emerging high-capacity anode material, it not only integrates seamlessly with next-generation battery chemistries but also offers a substantially lower carbon footprint than conventional carbon-based reducing agents. The thermodynamics and reaction mechanism between LiCoO<sub>2</sub> and Si are investigated using differential thermal and thermogravimetric analyses. The reaction products are characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction. When heated to 1500 °C, LiCoO<sub>2</sub> undergoes simultaneous decomposition and melting, reacting with Si to produce cobalt spheres. Through a laser-enabled recycling process for only 30 s with a laser power of 2 kW, LiCoO<sub>2</sub> is reduced via silicothermic reaction to a Co–Si alloy with only a small amount of slag (Li<sub>2</sub>SiO<sub>3</sub> and Li<sub>2</sub>Co(SiO<sub>4</sub>)). This successful use of silicon paves the way for a cleaner, more sustainable battery recycling strategy.</div></div>","PeriodicalId":93463,"journal":{"name":"Journal of hazardous materials letters","volume":"6 ","pages":"Article 100160"},"PeriodicalIF":8.1000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A laser-enabled low carbon emission pyrometallurgical approach to recycle Li-ion batteries via silicothermic reductions\",\"authors\":\"James Chen,&nbsp;Ruby Zhang,&nbsp;Maciej Podlesny,&nbsp;Tyler Smith,&nbsp;Chao Shi,&nbsp;Jian Li\",\"doi\":\"10.1016/j.hazl.2025.100160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In response to the growing shift from graphite to silicon in Li-ion battery anodes, we propose a novel low-carbon pyrometallurgical recycling method that uses silicon as the reducing agent. Silicon was chosen as the reductant because, as the emerging high-capacity anode material, it not only integrates seamlessly with next-generation battery chemistries but also offers a substantially lower carbon footprint than conventional carbon-based reducing agents. The thermodynamics and reaction mechanism between LiCoO<sub>2</sub> and Si are investigated using differential thermal and thermogravimetric analyses. The reaction products are characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction. When heated to 1500 °C, LiCoO<sub>2</sub> undergoes simultaneous decomposition and melting, reacting with Si to produce cobalt spheres. Through a laser-enabled recycling process for only 30 s with a laser power of 2 kW, LiCoO<sub>2</sub> is reduced via silicothermic reaction to a Co–Si alloy with only a small amount of slag (Li<sub>2</sub>SiO<sub>3</sub> and Li<sub>2</sub>Co(SiO<sub>4</sub>)). This successful use of silicon paves the way for a cleaner, more sustainable battery recycling strategy.</div></div>\",\"PeriodicalId\":93463,\"journal\":{\"name\":\"Journal of hazardous materials letters\",\"volume\":\"6 \",\"pages\":\"Article 100160\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of hazardous materials letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666911025000206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of hazardous materials letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666911025000206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

为了应对锂离子电池负极从石墨到硅的日益转变,我们提出了一种新的低碳火法回收方法,该方法使用硅作为还原剂。之所以选择硅作为还原剂,是因为作为新兴的高容量阳极材料,它不仅与下一代电池化学物质无缝集成,而且比传统的碳基还原剂提供更低的碳足迹。利用差热分析和热重分析研究了LiCoO2与Si之间的热力学和反应机理。用扫描电子显微镜、能量色散x射线能谱和x射线衍射对反应产物进行了表征。当加热到1500 °C时,LiCoO2同时分解和熔化,与Si反应生成钴球。通过激光回收过程,激光功率为2 kW,时间仅为30 s, LiCoO2通过硅热反应还原为Co-Si合金,仅含有少量渣(Li2SiO3和Li2Co(SiO4))。硅的成功使用为更清洁、更可持续的电池回收策略铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A laser-enabled low carbon emission pyrometallurgical approach to recycle Li-ion batteries via silicothermic reductions
In response to the growing shift from graphite to silicon in Li-ion battery anodes, we propose a novel low-carbon pyrometallurgical recycling method that uses silicon as the reducing agent. Silicon was chosen as the reductant because, as the emerging high-capacity anode material, it not only integrates seamlessly with next-generation battery chemistries but also offers a substantially lower carbon footprint than conventional carbon-based reducing agents. The thermodynamics and reaction mechanism between LiCoO2 and Si are investigated using differential thermal and thermogravimetric analyses. The reaction products are characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction. When heated to 1500 °C, LiCoO2 undergoes simultaneous decomposition and melting, reacting with Si to produce cobalt spheres. Through a laser-enabled recycling process for only 30 s with a laser power of 2 kW, LiCoO2 is reduced via silicothermic reaction to a Co–Si alloy with only a small amount of slag (Li2SiO3 and Li2Co(SiO4)). This successful use of silicon paves the way for a cleaner, more sustainable battery recycling strategy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of hazardous materials letters
Journal of hazardous materials letters Pollution, Health, Toxicology and Mutagenesis, Environmental Chemistry, Waste Management and Disposal, Environmental Engineering
CiteScore
10.30
自引率
0.00%
发文量
0
审稿时长
20 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信