外源纳米硅处理增强了番茄幼苗的低温耐受性

IF 7.7
Qianqian He , Yan Liu , Binchuan Chang , Ran Yang , Shuxun Guo , Jing Gao , Abid Khan , Ruixing Zhang , Yu Shi , Yi Zhang
{"title":"外源纳米硅处理增强了番茄幼苗的低温耐受性","authors":"Qianqian He ,&nbsp;Yan Liu ,&nbsp;Binchuan Chang ,&nbsp;Ran Yang ,&nbsp;Shuxun Guo ,&nbsp;Jing Gao ,&nbsp;Abid Khan ,&nbsp;Ruixing Zhang ,&nbsp;Yu Shi ,&nbsp;Yi Zhang","doi":"10.1016/j.plana.2025.100183","DOIUrl":null,"url":null,"abstract":"<div><div>Low-temperature (LT) stress limits the growth, yield, and quality of warm-season crops like tomatoes. We compared Sodium silicate (Ion-Si) and silicon nanoparticles (SiNPs) sprayed on tomato ‘Zhongza-9’ seedlings under LT. SiNPs surpassed Ion-Si by reducing malondialdehyde (MDA) and reactive oxygen species (ROS) levels, while increasing chlorophyll content, net photosynthetic rate and biomass, stabilizing membranes, enhancing macro- and micronutrient uptake. Additionally, SiNPs upregulated sucrose synthase (SS) and sucrose phosphate synthase (SPS) activities, downregulated starch synthase (AI) and neutral invertase (NI) activities, increasing sucrose. Transcriptome showed SiNPs activated genes for chlorophyll metabolism, photosynthesis, antioxidants, sugar metabolism, and hormone signaling, elevating superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) to strengthen LT tolerance. Our findings provide a basis for using SiNPs to improve the cold tolerance of tomatoes.</div></div>","PeriodicalId":101029,"journal":{"name":"Plant Nano Biology","volume":"13 ","pages":"Article 100183"},"PeriodicalIF":7.7000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exogenous nano-silicon treatment enhanced the low temperature tolerance of tomato seedlings\",\"authors\":\"Qianqian He ,&nbsp;Yan Liu ,&nbsp;Binchuan Chang ,&nbsp;Ran Yang ,&nbsp;Shuxun Guo ,&nbsp;Jing Gao ,&nbsp;Abid Khan ,&nbsp;Ruixing Zhang ,&nbsp;Yu Shi ,&nbsp;Yi Zhang\",\"doi\":\"10.1016/j.plana.2025.100183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Low-temperature (LT) stress limits the growth, yield, and quality of warm-season crops like tomatoes. We compared Sodium silicate (Ion-Si) and silicon nanoparticles (SiNPs) sprayed on tomato ‘Zhongza-9’ seedlings under LT. SiNPs surpassed Ion-Si by reducing malondialdehyde (MDA) and reactive oxygen species (ROS) levels, while increasing chlorophyll content, net photosynthetic rate and biomass, stabilizing membranes, enhancing macro- and micronutrient uptake. Additionally, SiNPs upregulated sucrose synthase (SS) and sucrose phosphate synthase (SPS) activities, downregulated starch synthase (AI) and neutral invertase (NI) activities, increasing sucrose. Transcriptome showed SiNPs activated genes for chlorophyll metabolism, photosynthesis, antioxidants, sugar metabolism, and hormone signaling, elevating superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) to strengthen LT tolerance. Our findings provide a basis for using SiNPs to improve the cold tolerance of tomatoes.</div></div>\",\"PeriodicalId\":101029,\"journal\":{\"name\":\"Plant Nano Biology\",\"volume\":\"13 \",\"pages\":\"Article 100183\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Nano Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773111125000506\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Nano Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773111125000506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

低温胁迫限制了西红柿等暖季作物的生长、产量和质量。结果表明,在低温胁迫下,硅酸钠(ionsi)和硅纳米颗粒(SiNPs)通过降低丙二醛(MDA)和活性氧(ROS)水平,提高叶绿素含量、净光合速率和生物量,稳定膜,促进宏观和微量养分吸收,超过了离子硅。此外,SiNPs上调蔗糖合成酶(SS)和蔗糖磷酸合成酶(SPS)活性,下调淀粉合成酶(AI)和中性转化酶(NI)活性,使蔗糖含量升高。转录组显示,SiNPs激活了叶绿素代谢、光合作用、抗氧化剂、糖代谢和激素信号传导的基因,提高了超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)的水平,增强了对LT的耐受性。本研究结果为利用SiNPs提高番茄耐寒性提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exogenous nano-silicon treatment enhanced the low temperature tolerance of tomato seedlings
Low-temperature (LT) stress limits the growth, yield, and quality of warm-season crops like tomatoes. We compared Sodium silicate (Ion-Si) and silicon nanoparticles (SiNPs) sprayed on tomato ‘Zhongza-9’ seedlings under LT. SiNPs surpassed Ion-Si by reducing malondialdehyde (MDA) and reactive oxygen species (ROS) levels, while increasing chlorophyll content, net photosynthetic rate and biomass, stabilizing membranes, enhancing macro- and micronutrient uptake. Additionally, SiNPs upregulated sucrose synthase (SS) and sucrose phosphate synthase (SPS) activities, downregulated starch synthase (AI) and neutral invertase (NI) activities, increasing sucrose. Transcriptome showed SiNPs activated genes for chlorophyll metabolism, photosynthesis, antioxidants, sugar metabolism, and hormone signaling, elevating superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) to strengthen LT tolerance. Our findings provide a basis for using SiNPs to improve the cold tolerance of tomatoes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信