经典环中复杂直觉模糊理想的一些新性质

Q1 Mathematics
Ziad Khan , Fawad Hussain , Ikhtesham Ullah , Tariq Rahim , Madad Khan , Rashid Jan , Ibrahim Mekawy , Asma Alharbi
{"title":"经典环中复杂直觉模糊理想的一些新性质","authors":"Ziad Khan ,&nbsp;Fawad Hussain ,&nbsp;Ikhtesham Ullah ,&nbsp;Tariq Rahim ,&nbsp;Madad Khan ,&nbsp;Rashid Jan ,&nbsp;Ibrahim Mekawy ,&nbsp;Asma Alharbi","doi":"10.1016/j.padiff.2024.100811","DOIUrl":null,"url":null,"abstract":"<div><div>The complex intuitionistic fuzzy set is an extension of the intuitionistic fuzzy set where the membership and non-membership functions are expressed by a complex numbers. Ring theory is a well-known field of abstract algebra that is used in a broad area of present study in mathematics and computer science. The study of ideals is important in numerous ways in ring theory. Keeping in view the importance of complex intuitionistic fuzzy sets and ring theory, in this paper, we define the notion of complex intuitionistic fuzzy ideals in a classical ring <span><math><mi>R</mi></math></span> and investigate its various algebraic properties. We obtain that the intersection of any two complex intuitionistic fuzzy ideals of a classical ring <span><math><mi>R</mi></math></span> is again a complex intuitionistic fuzzy ideal of <span><math><mi>R</mi></math></span>. We also define the notion of a complex intuitionistic fuzzy level set. Furthermore, we define the concept of complex intuitionistic fuzzy cosets of a complex intuitionistic fuzzy ideal of a classical ring and prove that the set of all complex intuitionistic fuzzy cosets of a complex intuitionistic fuzzy ideal forms a ring under certain binary operations. Finally, we prove a complex intuitionistic fuzzy version of the fundamental theorem of a ring homomorphism.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"15 ","pages":"Article 100811"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some novel properties of complex intuitionistic fuzzy ideals in classical ring\",\"authors\":\"Ziad Khan ,&nbsp;Fawad Hussain ,&nbsp;Ikhtesham Ullah ,&nbsp;Tariq Rahim ,&nbsp;Madad Khan ,&nbsp;Rashid Jan ,&nbsp;Ibrahim Mekawy ,&nbsp;Asma Alharbi\",\"doi\":\"10.1016/j.padiff.2024.100811\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The complex intuitionistic fuzzy set is an extension of the intuitionistic fuzzy set where the membership and non-membership functions are expressed by a complex numbers. Ring theory is a well-known field of abstract algebra that is used in a broad area of present study in mathematics and computer science. The study of ideals is important in numerous ways in ring theory. Keeping in view the importance of complex intuitionistic fuzzy sets and ring theory, in this paper, we define the notion of complex intuitionistic fuzzy ideals in a classical ring <span><math><mi>R</mi></math></span> and investigate its various algebraic properties. We obtain that the intersection of any two complex intuitionistic fuzzy ideals of a classical ring <span><math><mi>R</mi></math></span> is again a complex intuitionistic fuzzy ideal of <span><math><mi>R</mi></math></span>. We also define the notion of a complex intuitionistic fuzzy level set. Furthermore, we define the concept of complex intuitionistic fuzzy cosets of a complex intuitionistic fuzzy ideal of a classical ring and prove that the set of all complex intuitionistic fuzzy cosets of a complex intuitionistic fuzzy ideal forms a ring under certain binary operations. Finally, we prove a complex intuitionistic fuzzy version of the fundamental theorem of a ring homomorphism.</div></div>\",\"PeriodicalId\":34531,\"journal\":{\"name\":\"Partial Differential Equations in Applied Mathematics\",\"volume\":\"15 \",\"pages\":\"Article 100811\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Partial Differential Equations in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666818124001979\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818124001979","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

复直觉模糊集是直觉模糊集的扩展,其隶属函数和非隶属函数用复数表示。环理论是一个著名的抽象代数领域,在数学和计算机科学的广泛研究中得到应用。在环理论中,理想的研究在很多方面都很重要。考虑到复直觉模糊集和环理论的重要性,在经典环R中定义了复直觉模糊理想的概念,并研究了它的各种代数性质。我们得到了经典环R的任意两个复直觉模糊理想的交点仍然是R的复直觉模糊理想,并定义了复直觉模糊水平集的概念。进一步,我们定义了经典环上复直觉模糊理想的复直觉模糊协集的概念,并证明了在一定的二元运算下,复直觉模糊理想的所有复直觉模糊协集的集合构成环。最后,我们证明了环同态基本定理的一个复杂直觉模糊版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some novel properties of complex intuitionistic fuzzy ideals in classical ring
The complex intuitionistic fuzzy set is an extension of the intuitionistic fuzzy set where the membership and non-membership functions are expressed by a complex numbers. Ring theory is a well-known field of abstract algebra that is used in a broad area of present study in mathematics and computer science. The study of ideals is important in numerous ways in ring theory. Keeping in view the importance of complex intuitionistic fuzzy sets and ring theory, in this paper, we define the notion of complex intuitionistic fuzzy ideals in a classical ring R and investigate its various algebraic properties. We obtain that the intersection of any two complex intuitionistic fuzzy ideals of a classical ring R is again a complex intuitionistic fuzzy ideal of R. We also define the notion of a complex intuitionistic fuzzy level set. Furthermore, we define the concept of complex intuitionistic fuzzy cosets of a complex intuitionistic fuzzy ideal of a classical ring and prove that the set of all complex intuitionistic fuzzy cosets of a complex intuitionistic fuzzy ideal forms a ring under certain binary operations. Finally, we prove a complex intuitionistic fuzzy version of the fundamental theorem of a ring homomorphism.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信