数据披露策略:动态系统中隐私与利润的平衡

IF 6.8 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Cheng-Han Wu
{"title":"数据披露策略:动态系统中隐私与利润的平衡","authors":"Cheng-Han Wu","doi":"10.1016/j.dss.2025.114510","DOIUrl":null,"url":null,"abstract":"<div><div>Digital platforms play a crucial role in our interconnected society, relying on user-disclosed data to enhance advertising revenue and user experiences and provide free services. While data accumulation benefits both platforms and users, it raises privacy concerns. This study explores the interaction between user data disclosure strategies and profitability for a platform and a developer, considering three strategies: mandatory data disclosure with free-to-use, mandatory disclosure with pay-to-use, and user-selective disclosure, allowing payment without data sharing. We formulate a dynamic optimization problem to capture how user data accumulation evolves and influences firm decisions. This framework also degenerates into a static setting for comparison, allowing us to assess the impact of dynamic evolution. Our findings reveal that while static models favor payment-based strategies, dynamic models entail a transition from a free-to-use model, facilitating early-stage data accumulation, to a selective disclosure model that balances privacy concerns and profitability. These findings offer guidance for managers in developing adaptive data disclosure strategies that optimize profitability while addressing user privacy concerns.</div></div>","PeriodicalId":55181,"journal":{"name":"Decision Support Systems","volume":"197 ","pages":"Article 114510"},"PeriodicalIF":6.8000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data disclosure strategy: Navigating the balance between privacy and profit in a dynamic system\",\"authors\":\"Cheng-Han Wu\",\"doi\":\"10.1016/j.dss.2025.114510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Digital platforms play a crucial role in our interconnected society, relying on user-disclosed data to enhance advertising revenue and user experiences and provide free services. While data accumulation benefits both platforms and users, it raises privacy concerns. This study explores the interaction between user data disclosure strategies and profitability for a platform and a developer, considering three strategies: mandatory data disclosure with free-to-use, mandatory disclosure with pay-to-use, and user-selective disclosure, allowing payment without data sharing. We formulate a dynamic optimization problem to capture how user data accumulation evolves and influences firm decisions. This framework also degenerates into a static setting for comparison, allowing us to assess the impact of dynamic evolution. Our findings reveal that while static models favor payment-based strategies, dynamic models entail a transition from a free-to-use model, facilitating early-stage data accumulation, to a selective disclosure model that balances privacy concerns and profitability. These findings offer guidance for managers in developing adaptive data disclosure strategies that optimize profitability while addressing user privacy concerns.</div></div>\",\"PeriodicalId\":55181,\"journal\":{\"name\":\"Decision Support Systems\",\"volume\":\"197 \",\"pages\":\"Article 114510\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Decision Support Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167923625001113\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision Support Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167923625001113","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

数字平台在我们这个互联的社会中扮演着至关重要的角色,依靠用户披露的数据来提高广告收入和用户体验,并提供免费服务。虽然数据积累对平台和用户都有利,但它引发了隐私问题。本研究探讨了用户数据披露策略与平台和开发商盈利能力之间的相互作用,考虑了三种策略:免费使用的强制性数据披露,付费使用的强制性数据披露,以及用户选择性披露,允许在不共享数据的情况下付费。我们制定了一个动态优化问题来捕捉用户数据积累如何演变和影响公司决策。这个框架也退化为一个静态的比较设置,允许我们评估动态进化的影响。我们的研究结果表明,静态模式有利于基于付费的策略,而动态模式则需要从免费使用模式(促进早期数据积累)过渡到平衡隐私问题和盈利能力的选择性披露模式。这些发现为管理人员开发适应性数据披露策略提供了指导,这些策略可以在解决用户隐私问题的同时优化盈利能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data disclosure strategy: Navigating the balance between privacy and profit in a dynamic system
Digital platforms play a crucial role in our interconnected society, relying on user-disclosed data to enhance advertising revenue and user experiences and provide free services. While data accumulation benefits both platforms and users, it raises privacy concerns. This study explores the interaction between user data disclosure strategies and profitability for a platform and a developer, considering three strategies: mandatory data disclosure with free-to-use, mandatory disclosure with pay-to-use, and user-selective disclosure, allowing payment without data sharing. We formulate a dynamic optimization problem to capture how user data accumulation evolves and influences firm decisions. This framework also degenerates into a static setting for comparison, allowing us to assess the impact of dynamic evolution. Our findings reveal that while static models favor payment-based strategies, dynamic models entail a transition from a free-to-use model, facilitating early-stage data accumulation, to a selective disclosure model that balances privacy concerns and profitability. These findings offer guidance for managers in developing adaptive data disclosure strategies that optimize profitability while addressing user privacy concerns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Decision Support Systems
Decision Support Systems 工程技术-计算机:人工智能
CiteScore
14.70
自引率
6.70%
发文量
119
审稿时长
13 months
期刊介绍: The common thread of articles published in Decision Support Systems is their relevance to theoretical and technical issues in the support of enhanced decision making. The areas addressed may include foundations, functionality, interfaces, implementation, impacts, and evaluation of decision support systems (DSSs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信