固定团块金刚石磨料研磨中改进材料去除机理的数学模型

IF 3.7 2区 工程技术 Q2 ENGINEERING, MANUFACTURING
Jiapeng Chen , Yanan Peng , Ying Wei , Yulong Ding , Ke Dai , Bing Liu , Wenbo Bie , Jianxiu Su
{"title":"固定团块金刚石磨料研磨中改进材料去除机理的数学模型","authors":"Jiapeng Chen ,&nbsp;Yanan Peng ,&nbsp;Ying Wei ,&nbsp;Yulong Ding ,&nbsp;Ke Dai ,&nbsp;Bing Liu ,&nbsp;Wenbo Bie ,&nbsp;Jianxiu Su","doi":"10.1016/j.precisioneng.2025.08.006","DOIUrl":null,"url":null,"abstract":"<div><div>The manufacture of agglomerated diamond (AD) abrasives involves the combination of ceramic adhesives with single - crystal diamond (SCD) abrasives. This combination results in an abrasive that plays a pivotal role in the semiconductor production process, thus making it an integral material in the manufacturing process. Nevertheless, there exists a notable paucity of numerical and analytical models capable of comprehensively and precisely expounding upon the enhanced material - removal mechanism in the processing of lapping superhard and brittle semiconductor workpieces with fixed AD abrasives. In this treatise, the AD abrasive is ingeniously converted into an equivalent SCD abrasive. Based on the previous research on the removal model of superhard and brittle materials in the fixed SCD abrasive lapping, this paper has deepened the field. The mechanism of material removal and enhancement in fixed AD abrasive lapping was investigated in detail by using an equivalent single - crystal model. A comprehensive review of the interaction of physical and chemical factors aims to achieve efficient and accurate material removal, providing a theoretical basis and technical guidance for the precision machining of superhard and brittle materials. Through a scrupulous and detailed comparison of the correlations between the penetration depths of the AD and SCD abrasives into the sapphire wafer and the deformations occurring during the yielding process in the two types of abrasives incorporated into the matrix material of the fixed abrasive pad (FAP) that is intended to support the abrasives, an exhaustive exploration is carried out on the mapping between the FAP matrix characteristics and lapping parameters and the abrasive cutting depths. Consequently, the underlying and profound causes for the mechanism of performance improvement of fixed AD abrasive pads during material removal are clearly and systematically elucidated and summarized, thereby providing valuable insights and contributions to the relevant research domain.</div></div>","PeriodicalId":54589,"journal":{"name":"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology","volume":"96 ","pages":"Pages 822-839"},"PeriodicalIF":3.7000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A mathematical model on improved material removal mechanism in fixed agglomerated diamond abrasive lapping\",\"authors\":\"Jiapeng Chen ,&nbsp;Yanan Peng ,&nbsp;Ying Wei ,&nbsp;Yulong Ding ,&nbsp;Ke Dai ,&nbsp;Bing Liu ,&nbsp;Wenbo Bie ,&nbsp;Jianxiu Su\",\"doi\":\"10.1016/j.precisioneng.2025.08.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The manufacture of agglomerated diamond (AD) abrasives involves the combination of ceramic adhesives with single - crystal diamond (SCD) abrasives. This combination results in an abrasive that plays a pivotal role in the semiconductor production process, thus making it an integral material in the manufacturing process. Nevertheless, there exists a notable paucity of numerical and analytical models capable of comprehensively and precisely expounding upon the enhanced material - removal mechanism in the processing of lapping superhard and brittle semiconductor workpieces with fixed AD abrasives. In this treatise, the AD abrasive is ingeniously converted into an equivalent SCD abrasive. Based on the previous research on the removal model of superhard and brittle materials in the fixed SCD abrasive lapping, this paper has deepened the field. The mechanism of material removal and enhancement in fixed AD abrasive lapping was investigated in detail by using an equivalent single - crystal model. A comprehensive review of the interaction of physical and chemical factors aims to achieve efficient and accurate material removal, providing a theoretical basis and technical guidance for the precision machining of superhard and brittle materials. Through a scrupulous and detailed comparison of the correlations between the penetration depths of the AD and SCD abrasives into the sapphire wafer and the deformations occurring during the yielding process in the two types of abrasives incorporated into the matrix material of the fixed abrasive pad (FAP) that is intended to support the abrasives, an exhaustive exploration is carried out on the mapping between the FAP matrix characteristics and lapping parameters and the abrasive cutting depths. Consequently, the underlying and profound causes for the mechanism of performance improvement of fixed AD abrasive pads during material removal are clearly and systematically elucidated and summarized, thereby providing valuable insights and contributions to the relevant research domain.</div></div>\",\"PeriodicalId\":54589,\"journal\":{\"name\":\"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology\",\"volume\":\"96 \",\"pages\":\"Pages 822-839\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141635925002442\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141635925002442","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

聚块金刚石(AD)磨料的制造涉及到陶瓷胶粘剂与单晶金刚石(SCD)磨料的结合。这种组合产生了在半导体生产过程中起关键作用的磨料,从而使其成为制造过程中不可或缺的材料。然而,目前还缺乏能够全面、准确地阐述固定AD磨料研磨超硬脆半导体工件的强化材料去除机理的数值和解析模型。在这篇论文中,AD磨料被巧妙地转化为等效的SCD磨料。本文在前人对固定SCD磨料研磨超硬脆性材料去除模型研究的基础上,进一步深化了该领域的研究。采用等效单晶模型,研究了固定AD磨料研磨过程中材料去除和强化的机理。全面回顾物理和化学因素的相互作用,旨在实现高效、准确的材料去除,为超硬脆性材料的精密加工提供理论依据和技术指导。通过仔细和详细地比较AD和SCD磨料在蓝宝石晶圆中的渗透深度与两种类型的磨料在弯曲过程中发生的变形之间的相关性,这两种类型的磨料结合到用于支撑磨料的固定磨料垫(FAP)的基体材料中,对FAP基体特征与研磨参数和磨料切削深度之间的映射关系进行了详尽的探讨。从而清晰、系统地阐明和总结了固定AD磨料垫在材料去除过程中性能提升机理的深层原因,为相关研究领域提供了有价值的见解和贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A mathematical model on improved material removal mechanism in fixed agglomerated diamond abrasive lapping
The manufacture of agglomerated diamond (AD) abrasives involves the combination of ceramic adhesives with single - crystal diamond (SCD) abrasives. This combination results in an abrasive that plays a pivotal role in the semiconductor production process, thus making it an integral material in the manufacturing process. Nevertheless, there exists a notable paucity of numerical and analytical models capable of comprehensively and precisely expounding upon the enhanced material - removal mechanism in the processing of lapping superhard and brittle semiconductor workpieces with fixed AD abrasives. In this treatise, the AD abrasive is ingeniously converted into an equivalent SCD abrasive. Based on the previous research on the removal model of superhard and brittle materials in the fixed SCD abrasive lapping, this paper has deepened the field. The mechanism of material removal and enhancement in fixed AD abrasive lapping was investigated in detail by using an equivalent single - crystal model. A comprehensive review of the interaction of physical and chemical factors aims to achieve efficient and accurate material removal, providing a theoretical basis and technical guidance for the precision machining of superhard and brittle materials. Through a scrupulous and detailed comparison of the correlations between the penetration depths of the AD and SCD abrasives into the sapphire wafer and the deformations occurring during the yielding process in the two types of abrasives incorporated into the matrix material of the fixed abrasive pad (FAP) that is intended to support the abrasives, an exhaustive exploration is carried out on the mapping between the FAP matrix characteristics and lapping parameters and the abrasive cutting depths. Consequently, the underlying and profound causes for the mechanism of performance improvement of fixed AD abrasive pads during material removal are clearly and systematically elucidated and summarized, thereby providing valuable insights and contributions to the relevant research domain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.40
自引率
5.60%
发文量
177
审稿时长
46 days
期刊介绍: Precision Engineering - Journal of the International Societies for Precision Engineering and Nanotechnology is devoted to the multidisciplinary study and practice of high accuracy engineering, metrology, and manufacturing. The journal takes an integrated approach to all subjects related to research, design, manufacture, performance validation, and application of high precision machines, instruments, and components, including fundamental and applied research and development in manufacturing processes, fabrication technology, and advanced measurement science. The scope includes precision-engineered systems and supporting metrology over the full range of length scales, from atom-based nanotechnology and advanced lithographic technology to large-scale systems, including optical and radio telescopes and macrometrology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信