{"title":"半完全多部有向图中的广义路径和环","authors":"Jørgen Bang-Jensen , Yun Wang , Anders Yeo","doi":"10.1016/j.dam.2025.08.021","DOIUrl":null,"url":null,"abstract":"<div><div>A digraph is <strong>semicomplete</strong> if it has no pair of non-adjacent vertices. It is <strong>complete</strong> if every pair of distinct vertices induces a 2-cycle. A digraph is <strong>semicomplete multipartite</strong> if it can be obtained from a semicomplete digraph <span><math><mi>D</mi></math></span> by choosing a collection of vertex-disjoint subsets <span><math><mrow><msub><mrow><mi>X</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></math></span> of <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow></mrow></math></span> and then deleting all arcs both of whose end-vertices lie inside some <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>. We can also think of a semicomplete digraph as being obtained from a semicomplete multipartite digraph on the same vertex set and partite sets <span><math><mrow><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></math></span> by adding the arcs of a semicomplete digraph <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> on <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> for each partite set <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>. It is well known that both the hamiltonian path and the hamiltonian cycle problem can be solved in polynomial time for semicomplete multipartite digraphs. In this paper we study the complexity of finding a hamiltonian path or cycle in a semicomplete digraph <span><math><mi>S</mi></math></span> which is obtained as above from a semicomplete multipartite digraph <span><math><mi>D</mi></math></span> and semicomplete digraphs <span><math><mrow><msub><mrow><mi>D</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><mrow><mo>(</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>i</mi><mo>∈</mo><mrow><mo>[</mo><mi>c</mi><mo>]</mo></mrow></mrow></math></span> such that the path or cycle uses as few arcs of <span><math><mrow><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∪</mo><mo>…</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></math></span> as possible. We obtain a number of results for the case when each <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is a complete digraph. Already this case is highly nontrivial in the cycle case and the complexity is still open. We show how to find a Hamiltonian path which uses as few arcs from the <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>’s as possible in polynomial time and obtain a number of results, both structural and algorithmic on hamiltonian cycles that use the minimum or close to the minimum number of arcs from the <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>’s. Our results imply the polynomial solvability of some special cases of the NP-complete <span><math><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></mrow></math></span>-TSP problem. Finally we show that two natural questions about properties of quasi-hamiltonian cycles, that is, cycles meeting all partite sets in semicomplete multipartite digraphs are NP-complete.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"377 ","pages":"Pages 459-479"},"PeriodicalIF":1.0000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized paths and cycles in semicomplete multipartite digraphs\",\"authors\":\"Jørgen Bang-Jensen , Yun Wang , Anders Yeo\",\"doi\":\"10.1016/j.dam.2025.08.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A digraph is <strong>semicomplete</strong> if it has no pair of non-adjacent vertices. It is <strong>complete</strong> if every pair of distinct vertices induces a 2-cycle. A digraph is <strong>semicomplete multipartite</strong> if it can be obtained from a semicomplete digraph <span><math><mi>D</mi></math></span> by choosing a collection of vertex-disjoint subsets <span><math><mrow><msub><mrow><mi>X</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></math></span> of <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow></mrow></math></span> and then deleting all arcs both of whose end-vertices lie inside some <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>. We can also think of a semicomplete digraph as being obtained from a semicomplete multipartite digraph on the same vertex set and partite sets <span><math><mrow><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></math></span> by adding the arcs of a semicomplete digraph <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> on <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> for each partite set <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>. It is well known that both the hamiltonian path and the hamiltonian cycle problem can be solved in polynomial time for semicomplete multipartite digraphs. In this paper we study the complexity of finding a hamiltonian path or cycle in a semicomplete digraph <span><math><mi>S</mi></math></span> which is obtained as above from a semicomplete multipartite digraph <span><math><mi>D</mi></math></span> and semicomplete digraphs <span><math><mrow><msub><mrow><mi>D</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><mrow><mo>(</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>i</mi><mo>∈</mo><mrow><mo>[</mo><mi>c</mi><mo>]</mo></mrow></mrow></math></span> such that the path or cycle uses as few arcs of <span><math><mrow><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∪</mo><mo>…</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></math></span> as possible. We obtain a number of results for the case when each <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is a complete digraph. Already this case is highly nontrivial in the cycle case and the complexity is still open. We show how to find a Hamiltonian path which uses as few arcs from the <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>’s as possible in polynomial time and obtain a number of results, both structural and algorithmic on hamiltonian cycles that use the minimum or close to the minimum number of arcs from the <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>’s. Our results imply the polynomial solvability of some special cases of the NP-complete <span><math><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></mrow></math></span>-TSP problem. Finally we show that two natural questions about properties of quasi-hamiltonian cycles, that is, cycles meeting all partite sets in semicomplete multipartite digraphs are NP-complete.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"377 \",\"pages\":\"Pages 459-479\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25004627\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25004627","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Generalized paths and cycles in semicomplete multipartite digraphs
A digraph is semicomplete if it has no pair of non-adjacent vertices. It is complete if every pair of distinct vertices induces a 2-cycle. A digraph is semicomplete multipartite if it can be obtained from a semicomplete digraph by choosing a collection of vertex-disjoint subsets of and then deleting all arcs both of whose end-vertices lie inside some . We can also think of a semicomplete digraph as being obtained from a semicomplete multipartite digraph on the same vertex set and partite sets by adding the arcs of a semicomplete digraph on for each partite set . It is well known that both the hamiltonian path and the hamiltonian cycle problem can be solved in polynomial time for semicomplete multipartite digraphs. In this paper we study the complexity of finding a hamiltonian path or cycle in a semicomplete digraph which is obtained as above from a semicomplete multipartite digraph and semicomplete digraphs , such that the path or cycle uses as few arcs of as possible. We obtain a number of results for the case when each is a complete digraph. Already this case is highly nontrivial in the cycle case and the complexity is still open. We show how to find a Hamiltonian path which uses as few arcs from the ’s as possible in polynomial time and obtain a number of results, both structural and algorithmic on hamiltonian cycles that use the minimum or close to the minimum number of arcs from the ’s. Our results imply the polynomial solvability of some special cases of the NP-complete -TSP problem. Finally we show that two natural questions about properties of quasi-hamiltonian cycles, that is, cycles meeting all partite sets in semicomplete multipartite digraphs are NP-complete.
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.