高、低氧MoOX基复合异质触点用于高效稳定的晶体硅太阳能电池,效率达到22.10%

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS
Jingjie Li , Qian Kang , Yanhao Wang , Xiaofei Xu , Wanyu Lu , Linfeng Yang , Dayong Yuan , Shang Liu , Tinghao Liu , Yifei Hao , Yujun Zhang , Aoshuang Ding , Zihan Liu , Junxuan Ma , Jingwen Hu , Zhao Wu , Yifan Diao , Jing Wang , Yongzhe Zhang
{"title":"高、低氧MoOX基复合异质触点用于高效稳定的晶体硅太阳能电池,效率达到22.10%","authors":"Jingjie Li ,&nbsp;Qian Kang ,&nbsp;Yanhao Wang ,&nbsp;Xiaofei Xu ,&nbsp;Wanyu Lu ,&nbsp;Linfeng Yang ,&nbsp;Dayong Yuan ,&nbsp;Shang Liu ,&nbsp;Tinghao Liu ,&nbsp;Yifei Hao ,&nbsp;Yujun Zhang ,&nbsp;Aoshuang Ding ,&nbsp;Zihan Liu ,&nbsp;Junxuan Ma ,&nbsp;Jingwen Hu ,&nbsp;Zhao Wu ,&nbsp;Yifan Diao ,&nbsp;Jing Wang ,&nbsp;Yongzhe Zhang","doi":"10.1016/j.solmat.2025.113891","DOIUrl":null,"url":null,"abstract":"<div><div>Establishing an effective carrier selective passivation contact material is an effective approach to enhancing the PCE of <em>c</em>-Si solar cells. In this paper, the composite hole selective transport material (HSTL), was applied to the <em>c</em>-Si solar cell. The composite HSTL combines L-MoO<sub>X</sub> and H-MoO<sub>X</sub> thin films prepared from MoO<sub>2</sub> and MoO<sub>3</sub> evaporation sources. By optimizing the thickness of each layer in the composite HSTL, it was found that the change in the thickness of L-MoO<sub>X</sub> had a more significant impact on the cell's performance compared to that of H-MoO<sub>X</sub>. Finally, the addition of the SiO<sub>x</sub> layer after secondary forming gas annealing (FUF) treatment enabled the solar cells PCE to reach 22.10 %. This was due to the improvement in the passivation performance. Compared to the cells without FUF, the recombination current density decreased from over 120 fA/cm<sup>2</sup> to 26.84 fA/cm<sup>2</sup>, while the contact resistivity remained at around 24.60 mΩ cm<sup>2</sup>. Meanwhile, compared with single-layer H-MoO<sub>X</sub> materials, the solar cells PCE was improved by nearly 2 %. In addition, by combining STEM and solar cell performance attenuation experiments, we found that the instability of H-MoO<sub>X</sub>-based cell mainly stems from the element diffusion between Ag/H-MoO<sub>X</sub> interface. This research would facilitate the development of materials such as molybdenum oxide film for high performance and high stability solar cells.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"294 ","pages":"Article 113891"},"PeriodicalIF":6.3000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High and low oxygen content MoOX based composite heterocontacts for efficient and stable crystalline silicon solar cells reaching 22.10 % efficiency\",\"authors\":\"Jingjie Li ,&nbsp;Qian Kang ,&nbsp;Yanhao Wang ,&nbsp;Xiaofei Xu ,&nbsp;Wanyu Lu ,&nbsp;Linfeng Yang ,&nbsp;Dayong Yuan ,&nbsp;Shang Liu ,&nbsp;Tinghao Liu ,&nbsp;Yifei Hao ,&nbsp;Yujun Zhang ,&nbsp;Aoshuang Ding ,&nbsp;Zihan Liu ,&nbsp;Junxuan Ma ,&nbsp;Jingwen Hu ,&nbsp;Zhao Wu ,&nbsp;Yifan Diao ,&nbsp;Jing Wang ,&nbsp;Yongzhe Zhang\",\"doi\":\"10.1016/j.solmat.2025.113891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Establishing an effective carrier selective passivation contact material is an effective approach to enhancing the PCE of <em>c</em>-Si solar cells. In this paper, the composite hole selective transport material (HSTL), was applied to the <em>c</em>-Si solar cell. The composite HSTL combines L-MoO<sub>X</sub> and H-MoO<sub>X</sub> thin films prepared from MoO<sub>2</sub> and MoO<sub>3</sub> evaporation sources. By optimizing the thickness of each layer in the composite HSTL, it was found that the change in the thickness of L-MoO<sub>X</sub> had a more significant impact on the cell's performance compared to that of H-MoO<sub>X</sub>. Finally, the addition of the SiO<sub>x</sub> layer after secondary forming gas annealing (FUF) treatment enabled the solar cells PCE to reach 22.10 %. This was due to the improvement in the passivation performance. Compared to the cells without FUF, the recombination current density decreased from over 120 fA/cm<sup>2</sup> to 26.84 fA/cm<sup>2</sup>, while the contact resistivity remained at around 24.60 mΩ cm<sup>2</sup>. Meanwhile, compared with single-layer H-MoO<sub>X</sub> materials, the solar cells PCE was improved by nearly 2 %. In addition, by combining STEM and solar cell performance attenuation experiments, we found that the instability of H-MoO<sub>X</sub>-based cell mainly stems from the element diffusion between Ag/H-MoO<sub>X</sub> interface. This research would facilitate the development of materials such as molybdenum oxide film for high performance and high stability solar cells.</div></div>\",\"PeriodicalId\":429,\"journal\":{\"name\":\"Solar Energy Materials and Solar Cells\",\"volume\":\"294 \",\"pages\":\"Article 113891\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy Materials and Solar Cells\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927024825004921\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024825004921","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

建立有效的载流子选择性钝化接触材料是提高c-Si太阳能电池PCE的有效途径。本文将复合空穴选择性输运材料(HSTL)应用于c-Si太阳能电池。复合HSTL结合了由MoO2和MoO3蒸发源制备的L-MoOX和H-MoOX薄膜。通过对复合材料HSTL中各层厚度的优化,发现与H-MoOX相比,L-MoOX厚度的变化对电池性能的影响更为显著。最后,在二次成形气体退火(FUF)处理后加入SiOx层,使太阳能电池的PCE达到22.10%。这是由于钝化性能的提高。与未加FUF的电池相比,复合电流密度从超过120 fA/cm2下降到26.84 fA/cm2,而接触电阻率保持在24.60 mΩ cm2左右。同时,与单层H-MoOX材料相比,太阳能电池的PCE提高了近2%。此外,结合STEM和太阳能电池性能衰减实验,我们发现H-MoOX基电池的不稳定性主要源于Ag/H-MoOX界面之间的元素扩散。这项研究将促进高性能、高稳定性太阳能电池材料如氧化钼膜的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High and low oxygen content MoOX based composite heterocontacts for efficient and stable crystalline silicon solar cells reaching 22.10 % efficiency
Establishing an effective carrier selective passivation contact material is an effective approach to enhancing the PCE of c-Si solar cells. In this paper, the composite hole selective transport material (HSTL), was applied to the c-Si solar cell. The composite HSTL combines L-MoOX and H-MoOX thin films prepared from MoO2 and MoO3 evaporation sources. By optimizing the thickness of each layer in the composite HSTL, it was found that the change in the thickness of L-MoOX had a more significant impact on the cell's performance compared to that of H-MoOX. Finally, the addition of the SiOx layer after secondary forming gas annealing (FUF) treatment enabled the solar cells PCE to reach 22.10 %. This was due to the improvement in the passivation performance. Compared to the cells without FUF, the recombination current density decreased from over 120 fA/cm2 to 26.84 fA/cm2, while the contact resistivity remained at around 24.60 mΩ cm2. Meanwhile, compared with single-layer H-MoOX materials, the solar cells PCE was improved by nearly 2 %. In addition, by combining STEM and solar cell performance attenuation experiments, we found that the instability of H-MoOX-based cell mainly stems from the element diffusion between Ag/H-MoOX interface. This research would facilitate the development of materials such as molybdenum oxide film for high performance and high stability solar cells.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信