利用LIBS和ML技术快速表征垃圾转化为能源的MSW和RDF原料

IF 7.1 2区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Jincheng Liu , Oluwabunmi Iwakin , Carlos E. Romero , Liang Cheng , Faegheh Moazeni , Zheng Yao , Robert De Saro , Joseph Craparo
{"title":"利用LIBS和ML技术快速表征垃圾转化为能源的MSW和RDF原料","authors":"Jincheng Liu ,&nbsp;Oluwabunmi Iwakin ,&nbsp;Carlos E. Romero ,&nbsp;Liang Cheng ,&nbsp;Faegheh Moazeni ,&nbsp;Zheng Yao ,&nbsp;Robert De Saro ,&nbsp;Joseph Craparo","doi":"10.1016/j.wasman.2025.115079","DOIUrl":null,"url":null,"abstract":"<div><div>The heterogeneity in the composition of municipal solid wastes (MSW) poses significant challenges in the production of biofuel and bioproducts. This research aims to enhance the accuracy and efficiency of waste analysis and characterization by introducing a fast characterization approach for MSW-derived refuse-derived fuels (RDF) by combining Laser-Induced Breakdown Spectroscopy (LIBS) with advanced machine learning (ML) techniques. The approach combines data pre-processing of LIBS spectra of RDF, and the development of ML models trained on domain and theory-based spectral features for predicting process parameters. These models are adept at predicting key process parameters like High Heating Value (HHV), carbon content, and volatile matter. This approach can achieve an average RRMSE of 2.13% and R<sup>2</sup> of 0.98 or higher for all considered parameters on testing data. This work demonstrates significant potential for improving waste sorting, processing efficiency, and environmental compliance over traditional labor- and time-intensive laboratory waste analysis and characterization.</div></div>","PeriodicalId":23969,"journal":{"name":"Waste management","volume":"206 ","pages":"Article 115079"},"PeriodicalIF":7.1000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid characterization of MSW and RDF feedstocks for waste-to-energy process using LIBS and ML techniques\",\"authors\":\"Jincheng Liu ,&nbsp;Oluwabunmi Iwakin ,&nbsp;Carlos E. Romero ,&nbsp;Liang Cheng ,&nbsp;Faegheh Moazeni ,&nbsp;Zheng Yao ,&nbsp;Robert De Saro ,&nbsp;Joseph Craparo\",\"doi\":\"10.1016/j.wasman.2025.115079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The heterogeneity in the composition of municipal solid wastes (MSW) poses significant challenges in the production of biofuel and bioproducts. This research aims to enhance the accuracy and efficiency of waste analysis and characterization by introducing a fast characterization approach for MSW-derived refuse-derived fuels (RDF) by combining Laser-Induced Breakdown Spectroscopy (LIBS) with advanced machine learning (ML) techniques. The approach combines data pre-processing of LIBS spectra of RDF, and the development of ML models trained on domain and theory-based spectral features for predicting process parameters. These models are adept at predicting key process parameters like High Heating Value (HHV), carbon content, and volatile matter. This approach can achieve an average RRMSE of 2.13% and R<sup>2</sup> of 0.98 or higher for all considered parameters on testing data. This work demonstrates significant potential for improving waste sorting, processing efficiency, and environmental compliance over traditional labor- and time-intensive laboratory waste analysis and characterization.</div></div>\",\"PeriodicalId\":23969,\"journal\":{\"name\":\"Waste management\",\"volume\":\"206 \",\"pages\":\"Article 115079\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Waste management\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0956053X25004908\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste management","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956053X25004908","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

城市固体废物组成的异质性对生物燃料和生物产品的生产提出了重大挑战。本研究旨在通过将激光诱导击破光谱(LIBS)与先进的机器学习(ML)技术相结合,引入一种针对msw衍生垃圾衍生燃料(RDF)的快速表征方法,提高废物分析和表征的准确性和效率。该方法结合了RDF的LIBS谱的数据预处理,以及基于域和基于理论的谱特征训练的ML模型的开发,用于预测过程参数。这些模型擅长预测关键工艺参数,如高热值(HHV)、碳含量和挥发物。该方法可以在测试数据上实现所有考虑参数的平均RRMSE为2.13%,R2为0.98以上。与传统的劳动和时间密集型实验室废物分析和表征相比,这项工作显示了改善废物分类、处理效率和环境合规性的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Rapid characterization of MSW and RDF feedstocks for waste-to-energy process using LIBS and ML techniques

Rapid characterization of MSW and RDF feedstocks for waste-to-energy process using LIBS and ML techniques
The heterogeneity in the composition of municipal solid wastes (MSW) poses significant challenges in the production of biofuel and bioproducts. This research aims to enhance the accuracy and efficiency of waste analysis and characterization by introducing a fast characterization approach for MSW-derived refuse-derived fuels (RDF) by combining Laser-Induced Breakdown Spectroscopy (LIBS) with advanced machine learning (ML) techniques. The approach combines data pre-processing of LIBS spectra of RDF, and the development of ML models trained on domain and theory-based spectral features for predicting process parameters. These models are adept at predicting key process parameters like High Heating Value (HHV), carbon content, and volatile matter. This approach can achieve an average RRMSE of 2.13% and R2 of 0.98 or higher for all considered parameters on testing data. This work demonstrates significant potential for improving waste sorting, processing efficiency, and environmental compliance over traditional labor- and time-intensive laboratory waste analysis and characterization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Waste management
Waste management 环境科学-工程:环境
CiteScore
15.60
自引率
6.20%
发文量
492
审稿时长
39 days
期刊介绍: Waste Management is devoted to the presentation and discussion of information on solid wastes,it covers the entire lifecycle of solid. wastes. Scope: Addresses solid wastes in both industrialized and economically developing countries Covers various types of solid wastes, including: Municipal (e.g., residential, institutional, commercial, light industrial) Agricultural Special (e.g., C and D, healthcare, household hazardous wastes, sewage sludge)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信