通过氧化石墨烯集成实现高性能光伏应用中BaTiO3电光性能的转变

Q1 Materials Science
Mohamed Karouchi , Youssef Lachtioui , Omar Bajjou
{"title":"通过氧化石墨烯集成实现高性能光伏应用中BaTiO3电光性能的转变","authors":"Mohamed Karouchi ,&nbsp;Youssef Lachtioui ,&nbsp;Omar Bajjou","doi":"10.1016/j.mset.2025.07.003","DOIUrl":null,"url":null,"abstract":"<div><div>The pursuit of efficient and sustainable energy solutions has driven extensive research in photovoltaic technology. While materials with direct band gaps are preferred for efficient light absorption, the potential of indirect band gap materials with a reduction in the band gap from 1.62 eV to 1.28 eV. This study introduces a breakthrough: the integration of BaTiO<sub>3</sub> perovskite with graphene oxide (GO) to effectively transform the indirect band gap of BaTiO<sub>3</sub> into a direct band gap. This innovative approach unlocks a wider range of materials for solar cell applications, addressing a critical limitation in the field. The BaTiO<sub>3</sub>/GO composite exhibits significant advantages, including enhanced light absorption, improved stability, and enhanced electrical conductivity. Notably, the composite demonstrates a sharp and intense conductivity peak in the 350 nm to 800 nm range, highlighting its potential for high-performance solar cells. This groundbreaking research not only expands the material palette for photovoltaic applications but also addresses common challenges faced by traditional perovskite solar cells. The results pave the way for the development of durable, efficient, and cost-effective solar cells, contributing significantly to the transition towards a sustainable energy future.</div></div>","PeriodicalId":18283,"journal":{"name":"Materials Science for Energy Technologies","volume":"8 ","pages":"Pages 208-218"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transformation of BaTiO3 electro-optical properties through graphene oxide integration for high-performance photovoltaic applications\",\"authors\":\"Mohamed Karouchi ,&nbsp;Youssef Lachtioui ,&nbsp;Omar Bajjou\",\"doi\":\"10.1016/j.mset.2025.07.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The pursuit of efficient and sustainable energy solutions has driven extensive research in photovoltaic technology. While materials with direct band gaps are preferred for efficient light absorption, the potential of indirect band gap materials with a reduction in the band gap from 1.62 eV to 1.28 eV. This study introduces a breakthrough: the integration of BaTiO<sub>3</sub> perovskite with graphene oxide (GO) to effectively transform the indirect band gap of BaTiO<sub>3</sub> into a direct band gap. This innovative approach unlocks a wider range of materials for solar cell applications, addressing a critical limitation in the field. The BaTiO<sub>3</sub>/GO composite exhibits significant advantages, including enhanced light absorption, improved stability, and enhanced electrical conductivity. Notably, the composite demonstrates a sharp and intense conductivity peak in the 350 nm to 800 nm range, highlighting its potential for high-performance solar cells. This groundbreaking research not only expands the material palette for photovoltaic applications but also addresses common challenges faced by traditional perovskite solar cells. The results pave the way for the development of durable, efficient, and cost-effective solar cells, contributing significantly to the transition towards a sustainable energy future.</div></div>\",\"PeriodicalId\":18283,\"journal\":{\"name\":\"Materials Science for Energy Technologies\",\"volume\":\"8 \",\"pages\":\"Pages 208-218\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science for Energy Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589299125000102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science for Energy Technologies","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589299125000102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

摘要

对高效和可持续能源解决方案的追求推动了光伏技术的广泛研究。而具有直接带隙的材料是有效光吸收的首选材料,间接带隙材料的带隙从1.62 eV减少到1.28 eV。本研究引入了一项突破:BaTiO3钙钛矿与氧化石墨烯(GO)的集成,有效地将BaTiO3的间接带隙转化为直接带隙。这种创新的方法为太阳能电池应用解锁了更广泛的材料,解决了该领域的一个关键限制。BaTiO3/GO复合材料具有显著的优势,包括增强的光吸收,改善的稳定性和增强的导电性。值得注意的是,该复合材料在350 nm至800 nm范围内显示出一个尖锐而强烈的电导率峰值,突出了其高性能太阳能电池的潜力。这项开创性的研究不仅扩展了光伏应用的材料面板,而且解决了传统钙钛矿太阳能电池面临的共同挑战。研究结果为开发耐用、高效、低成本的太阳能电池铺平了道路,为向可持续能源的未来过渡做出了重大贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Transformation of BaTiO3 electro-optical properties through graphene oxide integration for high-performance photovoltaic applications

Transformation of BaTiO3 electro-optical properties through graphene oxide integration for high-performance photovoltaic applications
The pursuit of efficient and sustainable energy solutions has driven extensive research in photovoltaic technology. While materials with direct band gaps are preferred for efficient light absorption, the potential of indirect band gap materials with a reduction in the band gap from 1.62 eV to 1.28 eV. This study introduces a breakthrough: the integration of BaTiO3 perovskite with graphene oxide (GO) to effectively transform the indirect band gap of BaTiO3 into a direct band gap. This innovative approach unlocks a wider range of materials for solar cell applications, addressing a critical limitation in the field. The BaTiO3/GO composite exhibits significant advantages, including enhanced light absorption, improved stability, and enhanced electrical conductivity. Notably, the composite demonstrates a sharp and intense conductivity peak in the 350 nm to 800 nm range, highlighting its potential for high-performance solar cells. This groundbreaking research not only expands the material palette for photovoltaic applications but also addresses common challenges faced by traditional perovskite solar cells. The results pave the way for the development of durable, efficient, and cost-effective solar cells, contributing significantly to the transition towards a sustainable energy future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Science for Energy Technologies
Materials Science for Energy Technologies Materials Science-Materials Science (miscellaneous)
CiteScore
16.50
自引率
0.00%
发文量
41
审稿时长
39 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信