Piero Bonatti , Gianluca Cima , Domenico Lembo , Francesco Magliocca , Lorenzo Marconi , Riccardo Rosati , Luigi Sauro , Domenico Fabio Savo
{"title":"增强本体上受控查询计算的协同性","authors":"Piero Bonatti , Gianluca Cima , Domenico Lembo , Francesco Magliocca , Lorenzo Marconi , Riccardo Rosati , Luigi Sauro , Domenico Fabio Savo","doi":"10.1016/j.artint.2025.104402","DOIUrl":null,"url":null,"abstract":"<div><div>Controlled Query Evaluation (CQE) is a methodology designed to maintain confidentiality by either rejecting specific queries or adjusting responses to safeguard sensitive information. In this investigation, our focus centers on CQE within Description Logic ontologies, aiming to ensure that queries are answered truthfully as long as possible before resorting to deceptive responses, a cooperativity property which is called the “longest honeymoon”. Our work introduces new semantics for CQE, denoted as MC-CQE, which enjoys the longest honeymoon property and outperforms previous methodologies in terms of cooperativity.</div><div>We study the complexity of query answering in this new framework for ontologies expressed in the Description Logic <span><math><msub><mrow><mtext>DL-Lite</mtext></mrow><mrow><mi>R</mi></mrow></msub></math></span>. Specifically, we establish data complexity results under different maximally cooperative semantics and for different classes of queries. Our results identify both tractable and intractable cases. In particular, we show that the evaluation of Boolean unions of conjunctive queries is the same under all the above semantics and its data complexity is in <figure><img></figure>. This result makes query answering amenable to SQL query rewriting. However, this favorable property does not extend to open queries, even with a restricted query language limited to conjunctions of atoms. While, in general, answering open queries in the MC-CQE framework is intractable, we identify a sub-family of semantics under which answering full conjunctive queries is tractable.</div></div>","PeriodicalId":8434,"journal":{"name":"Artificial Intelligence","volume":"348 ","pages":"Article 104402"},"PeriodicalIF":4.6000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing cooperativity in controlled query evaluation over ontologies\",\"authors\":\"Piero Bonatti , Gianluca Cima , Domenico Lembo , Francesco Magliocca , Lorenzo Marconi , Riccardo Rosati , Luigi Sauro , Domenico Fabio Savo\",\"doi\":\"10.1016/j.artint.2025.104402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Controlled Query Evaluation (CQE) is a methodology designed to maintain confidentiality by either rejecting specific queries or adjusting responses to safeguard sensitive information. In this investigation, our focus centers on CQE within Description Logic ontologies, aiming to ensure that queries are answered truthfully as long as possible before resorting to deceptive responses, a cooperativity property which is called the “longest honeymoon”. Our work introduces new semantics for CQE, denoted as MC-CQE, which enjoys the longest honeymoon property and outperforms previous methodologies in terms of cooperativity.</div><div>We study the complexity of query answering in this new framework for ontologies expressed in the Description Logic <span><math><msub><mrow><mtext>DL-Lite</mtext></mrow><mrow><mi>R</mi></mrow></msub></math></span>. Specifically, we establish data complexity results under different maximally cooperative semantics and for different classes of queries. Our results identify both tractable and intractable cases. In particular, we show that the evaluation of Boolean unions of conjunctive queries is the same under all the above semantics and its data complexity is in <figure><img></figure>. This result makes query answering amenable to SQL query rewriting. However, this favorable property does not extend to open queries, even with a restricted query language limited to conjunctions of atoms. While, in general, answering open queries in the MC-CQE framework is intractable, we identify a sub-family of semantics under which answering full conjunctive queries is tractable.</div></div>\",\"PeriodicalId\":8434,\"journal\":{\"name\":\"Artificial Intelligence\",\"volume\":\"348 \",\"pages\":\"Article 104402\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0004370225001213\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0004370225001213","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Enhancing cooperativity in controlled query evaluation over ontologies
Controlled Query Evaluation (CQE) is a methodology designed to maintain confidentiality by either rejecting specific queries or adjusting responses to safeguard sensitive information. In this investigation, our focus centers on CQE within Description Logic ontologies, aiming to ensure that queries are answered truthfully as long as possible before resorting to deceptive responses, a cooperativity property which is called the “longest honeymoon”. Our work introduces new semantics for CQE, denoted as MC-CQE, which enjoys the longest honeymoon property and outperforms previous methodologies in terms of cooperativity.
We study the complexity of query answering in this new framework for ontologies expressed in the Description Logic . Specifically, we establish data complexity results under different maximally cooperative semantics and for different classes of queries. Our results identify both tractable and intractable cases. In particular, we show that the evaluation of Boolean unions of conjunctive queries is the same under all the above semantics and its data complexity is in . This result makes query answering amenable to SQL query rewriting. However, this favorable property does not extend to open queries, even with a restricted query language limited to conjunctions of atoms. While, in general, answering open queries in the MC-CQE framework is intractable, we identify a sub-family of semantics under which answering full conjunctive queries is tractable.
期刊介绍:
The Journal of Artificial Intelligence (AIJ) welcomes papers covering a broad spectrum of AI topics, including cognition, automated reasoning, computer vision, machine learning, and more. Papers should demonstrate advancements in AI and propose innovative approaches to AI problems. Additionally, the journal accepts papers describing AI applications, focusing on how new methods enhance performance rather than reiterating conventional approaches. In addition to regular papers, AIJ also accepts Research Notes, Research Field Reviews, Position Papers, Book Reviews, and summary papers on AI challenges and competitions.