MxOy@Bi2S3异质结中杂原子对位点引导CO2光还原成C2燃料

IF 13.1 1区 化学 Q1 CHEMISTRY, PHYSICAL
Zhixing Zhang, Qinyuan Hu, Jiawei Xie, Wensheng Yan, Jun Hu, Junfa Zhu, Yang Pan, Wenxiu Liu, Heng Liu* and Xingchen Jiao*, 
{"title":"MxOy@Bi2S3异质结中杂原子对位点引导CO2光还原成C2燃料","authors":"Zhixing Zhang,&nbsp;Qinyuan Hu,&nbsp;Jiawei Xie,&nbsp;Wensheng Yan,&nbsp;Jun Hu,&nbsp;Junfa Zhu,&nbsp;Yang Pan,&nbsp;Wenxiu Liu,&nbsp;Heng Liu* and Xingchen Jiao*,&nbsp;","doi":"10.1021/acscatal.5c04257","DOIUrl":null,"url":null,"abstract":"<p >Synthesis of ethylene (C<sub>2</sub>H<sub>4</sub>) through carbon dioxide (CO<sub>2</sub>) photoreduction is predominantly constrained by the kinetic difficulties in C–C coupling. Herein, we develop a universal strategy for C<sub>2</sub>H<sub>4</sub> synthesis from CO<sub>2</sub> photoreduction over a series of M<sub><i>x</i></sub>O<sub><i>y</i></sub>@Bi<sub>2</sub>S<sub>3</sub> heterojunctions in which the M<sub><i>x</i></sub>O<sub><i>y</i></sub>@Bi<sub>2</sub>S<sub>3</sub> heterojunction contain charge-asymmetrical M–Bi pair sites for enhanced C–C coupling. As a prototype, Bi<sub>2</sub>S<sub>3</sub> nanorod-based heterojunctions with wide-period and multigroup metal oxides (Bi<sub>2</sub>O<sub>3</sub>@Bi<sub>2</sub>S<sub>3</sub>, In<sub>2</sub>O<sub>3</sub>@Bi<sub>2</sub>S<sub>3</sub>, ZnO@Bi<sub>2</sub>S<sub>3</sub>, and SnO<sub>2</sub>@Bi<sub>2</sub>S<sub>3</sub> heterojunctions) are synthesized through a simple and effective strategy. Bader charge calculations confirm the presence of charge-asymmetrical M–Bi pair sites at the interface of the M<sub><i>x</i></sub>O<sub><i>y</i></sub>@Bi<sub>2</sub>S<sub>3</sub> heterojunction Further density functional theory (DFT) computations disclose that the C–C coupling turns from a nonspontaneous endothermic process to a spontaneous exothermic process after the construction of heterojunctions, suggesting the feasibility of generating C<sub>2</sub> products through CO<sub>2</sub> photoreduction on M<sub><i>x</i></sub>O<sub><i>y</i></sub>@Bi<sub>2</sub>S<sub>3</sub> heterojunctions. Therefore, all the M<sub><i>x</i></sub>O<sub><i>y</i></sub>@Bi<sub>2</sub>S<sub>3</sub> heterojunction can realize CO<sub>2</sub> photoreduction into C<sub>2</sub>H<sub>4</sub>, whereas the individual Bi<sub>2</sub>O<sub>3</sub>, In<sub>2</sub>O<sub>3</sub>, ZnO, and SnO<sub>2</sub> nanoparticles can only produce carbon monoxide as their product. This proposed universal strategy is expected to prepare a highly active heterojunction for C<sub>2</sub>H<sub>4</sub> photosynthesis from CO<sub>2</sub> reduction.</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":"15 16","pages":"14021–14028"},"PeriodicalIF":13.1000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CO2 Photoreduction into C2 Fuels Steered by Heteroatom Pair Sites in MxOy@Bi2S3 Heterojunction\",\"authors\":\"Zhixing Zhang,&nbsp;Qinyuan Hu,&nbsp;Jiawei Xie,&nbsp;Wensheng Yan,&nbsp;Jun Hu,&nbsp;Junfa Zhu,&nbsp;Yang Pan,&nbsp;Wenxiu Liu,&nbsp;Heng Liu* and Xingchen Jiao*,&nbsp;\",\"doi\":\"10.1021/acscatal.5c04257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Synthesis of ethylene (C<sub>2</sub>H<sub>4</sub>) through carbon dioxide (CO<sub>2</sub>) photoreduction is predominantly constrained by the kinetic difficulties in C–C coupling. Herein, we develop a universal strategy for C<sub>2</sub>H<sub>4</sub> synthesis from CO<sub>2</sub> photoreduction over a series of M<sub><i>x</i></sub>O<sub><i>y</i></sub>@Bi<sub>2</sub>S<sub>3</sub> heterojunctions in which the M<sub><i>x</i></sub>O<sub><i>y</i></sub>@Bi<sub>2</sub>S<sub>3</sub> heterojunction contain charge-asymmetrical M–Bi pair sites for enhanced C–C coupling. As a prototype, Bi<sub>2</sub>S<sub>3</sub> nanorod-based heterojunctions with wide-period and multigroup metal oxides (Bi<sub>2</sub>O<sub>3</sub>@Bi<sub>2</sub>S<sub>3</sub>, In<sub>2</sub>O<sub>3</sub>@Bi<sub>2</sub>S<sub>3</sub>, ZnO@Bi<sub>2</sub>S<sub>3</sub>, and SnO<sub>2</sub>@Bi<sub>2</sub>S<sub>3</sub> heterojunctions) are synthesized through a simple and effective strategy. Bader charge calculations confirm the presence of charge-asymmetrical M–Bi pair sites at the interface of the M<sub><i>x</i></sub>O<sub><i>y</i></sub>@Bi<sub>2</sub>S<sub>3</sub> heterojunction Further density functional theory (DFT) computations disclose that the C–C coupling turns from a nonspontaneous endothermic process to a spontaneous exothermic process after the construction of heterojunctions, suggesting the feasibility of generating C<sub>2</sub> products through CO<sub>2</sub> photoreduction on M<sub><i>x</i></sub>O<sub><i>y</i></sub>@Bi<sub>2</sub>S<sub>3</sub> heterojunctions. Therefore, all the M<sub><i>x</i></sub>O<sub><i>y</i></sub>@Bi<sub>2</sub>S<sub>3</sub> heterojunction can realize CO<sub>2</sub> photoreduction into C<sub>2</sub>H<sub>4</sub>, whereas the individual Bi<sub>2</sub>O<sub>3</sub>, In<sub>2</sub>O<sub>3</sub>, ZnO, and SnO<sub>2</sub> nanoparticles can only produce carbon monoxide as their product. This proposed universal strategy is expected to prepare a highly active heterojunction for C<sub>2</sub>H<sub>4</sub> photosynthesis from CO<sub>2</sub> reduction.</p>\",\"PeriodicalId\":9,\"journal\":{\"name\":\"ACS Catalysis \",\"volume\":\"15 16\",\"pages\":\"14021–14028\"},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Catalysis \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acscatal.5c04257\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscatal.5c04257","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

二氧化碳(CO2)光还原合成乙烯(C2H4)主要受C-C耦合动力学困难的制约。在此,我们开发了一种通过一系列MxOy@Bi2S3异质结从CO2光还原合成C2H4的通用策略,其中MxOy@Bi2S3异质结包含电荷不对称的M-Bi对位点,以增强C-C耦合。作为原型,我们通过一种简单有效的策略合成了具有宽周期和多基团金属氧化物(Bi2O3@Bi2S3, In2O3@Bi2S3, ZnO@Bi2S3和SnO2@Bi2S3异质结)的Bi2S3纳米棒异质结。Bader电荷计算证实了在MxOy@Bi2S3异质结界面处存在电荷不对称的M-Bi对位点,进一步的密度泛函理论(DFT)计算表明,在异质结构建后,C-C耦合从非自发吸热过程转变为自发放热过程,表明在MxOy@Bi2S3异质结上通过CO2光还原生成C2产物的可行性。因此,所有的MxOy@Bi2S3异质结都可以实现CO2光还原成C2H4,而单独的Bi2O3、In2O3、ZnO和SnO2纳米颗粒只能产生一氧化碳作为它们的产物。这一提出的通用策略有望为二氧化碳还原C2H4光合作用制备高活性异质结。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

CO2 Photoreduction into C2 Fuels Steered by Heteroatom Pair Sites in MxOy@Bi2S3 Heterojunction

CO2 Photoreduction into C2 Fuels Steered by Heteroatom Pair Sites in MxOy@Bi2S3 Heterojunction

Synthesis of ethylene (C2H4) through carbon dioxide (CO2) photoreduction is predominantly constrained by the kinetic difficulties in C–C coupling. Herein, we develop a universal strategy for C2H4 synthesis from CO2 photoreduction over a series of MxOy@Bi2S3 heterojunctions in which the MxOy@Bi2S3 heterojunction contain charge-asymmetrical M–Bi pair sites for enhanced C–C coupling. As a prototype, Bi2S3 nanorod-based heterojunctions with wide-period and multigroup metal oxides (Bi2O3@Bi2S3, In2O3@Bi2S3, ZnO@Bi2S3, and SnO2@Bi2S3 heterojunctions) are synthesized through a simple and effective strategy. Bader charge calculations confirm the presence of charge-asymmetrical M–Bi pair sites at the interface of the MxOy@Bi2S3 heterojunction Further density functional theory (DFT) computations disclose that the C–C coupling turns from a nonspontaneous endothermic process to a spontaneous exothermic process after the construction of heterojunctions, suggesting the feasibility of generating C2 products through CO2 photoreduction on MxOy@Bi2S3 heterojunctions. Therefore, all the MxOy@Bi2S3 heterojunction can realize CO2 photoreduction into C2H4, whereas the individual Bi2O3, In2O3, ZnO, and SnO2 nanoparticles can only produce carbon monoxide as their product. This proposed universal strategy is expected to prepare a highly active heterojunction for C2H4 photosynthesis from CO2 reduction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Catalysis
ACS Catalysis CHEMISTRY, PHYSICAL-
CiteScore
20.80
自引率
6.20%
发文量
1253
审稿时长
1.5 months
期刊介绍: ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels. The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信