基于大语言模型的自动驾驶研究进展

IF 11.6 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Yuxuan Zhu, Shiyi Wang, Wenqing Zhong, Nianchen Shen, Yunqi Li, Siqi Wang, Zhiheng Li, Cathy Wu, Zhengbing He, Li Li
{"title":"基于大语言模型的自动驾驶研究进展","authors":"Yuxuan Zhu, Shiyi Wang, Wenqing Zhong, Nianchen Shen, Yunqi Li, Siqi Wang, Zhiheng Li, Cathy Wu, Zhengbing He, Li Li","doi":"10.1016/j.eng.2025.07.038","DOIUrl":null,"url":null,"abstract":"Artificial intelligence (AI) plays a crucial role in autonomous driving (AD), advancing its development toward greater intelligence and efficiency. In response to persistent challenges in current AD algorithms, many researchers believe that large language models (LLMs), with their powerful reasoning capabilities and extensive knowledge, may offer promising solutions, enabling AD systems to achieve deeper understanding and more informed decision-making. Both industry and academia have actively explored the application of LLMs in AD tasks, showing early signs of progress in addressing issues such as the long-tail problem. To examine whether and how LLMs can enhance AD, this paper provides a comprehensive analysis of their potential applications, including their optimization strategies in both modular and end-to-end approaches, with a particular focus on how LLMs can address existing problems and challenges in current solutions. Furthermore, we explore an important question: Can LLM-based artificial general intelligence (AGI) serve as a key for achieving high-level AD? We also analyze the potential limitations and challenges LLMs may face in advancing AD technology and extend the discussion to societal considerations, including critical safety and security concerns. This survey aims to provide a foundational reference for cross-disciplinary researchers and help guide future research directions.","PeriodicalId":11783,"journal":{"name":"Engineering","volume":"749 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Survey on Large Language Model-Powered Autonomous Driving\",\"authors\":\"Yuxuan Zhu, Shiyi Wang, Wenqing Zhong, Nianchen Shen, Yunqi Li, Siqi Wang, Zhiheng Li, Cathy Wu, Zhengbing He, Li Li\",\"doi\":\"10.1016/j.eng.2025.07.038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial intelligence (AI) plays a crucial role in autonomous driving (AD), advancing its development toward greater intelligence and efficiency. In response to persistent challenges in current AD algorithms, many researchers believe that large language models (LLMs), with their powerful reasoning capabilities and extensive knowledge, may offer promising solutions, enabling AD systems to achieve deeper understanding and more informed decision-making. Both industry and academia have actively explored the application of LLMs in AD tasks, showing early signs of progress in addressing issues such as the long-tail problem. To examine whether and how LLMs can enhance AD, this paper provides a comprehensive analysis of their potential applications, including their optimization strategies in both modular and end-to-end approaches, with a particular focus on how LLMs can address existing problems and challenges in current solutions. Furthermore, we explore an important question: Can LLM-based artificial general intelligence (AGI) serve as a key for achieving high-level AD? We also analyze the potential limitations and challenges LLMs may face in advancing AD technology and extend the discussion to societal considerations, including critical safety and security concerns. This survey aims to provide a foundational reference for cross-disciplinary researchers and help guide future research directions.\",\"PeriodicalId\":11783,\"journal\":{\"name\":\"Engineering\",\"volume\":\"749 1\",\"pages\":\"\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.eng.2025.07.038\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.eng.2025.07.038","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

人工智能(AI)在自动驾驶(AD)中发挥着至关重要的作用,推动其朝着更智能、更高效的方向发展。针对当前AD算法中持续存在的挑战,许多研究人员认为,大型语言模型(llm)具有强大的推理能力和广泛的知识,可能提供有希望的解决方案,使AD系统能够实现更深入的理解和更明智的决策。业界和学术界都在积极探索法学硕士在AD任务中的应用,在解决长尾问题等问题上取得了初步进展。为了研究法学硕士是否以及如何增强AD,本文全面分析了它们的潜在应用,包括它们在模块化和端到端方法中的优化策略,并特别关注法学硕士如何解决当前解决方案中存在的问题和挑战。此外,我们探讨了一个重要的问题:基于法学硕士的人工通用智能(AGI)能否作为实现高级人工智能的关键?我们还分析了法学硕士在推进AD技术方面可能面临的潜在限制和挑战,并将讨论扩展到社会考虑,包括关键的安全和安全问题。本研究旨在为跨学科研究人员提供基础参考,指导未来的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Survey on Large Language Model-Powered Autonomous Driving
Artificial intelligence (AI) plays a crucial role in autonomous driving (AD), advancing its development toward greater intelligence and efficiency. In response to persistent challenges in current AD algorithms, many researchers believe that large language models (LLMs), with their powerful reasoning capabilities and extensive knowledge, may offer promising solutions, enabling AD systems to achieve deeper understanding and more informed decision-making. Both industry and academia have actively explored the application of LLMs in AD tasks, showing early signs of progress in addressing issues such as the long-tail problem. To examine whether and how LLMs can enhance AD, this paper provides a comprehensive analysis of their potential applications, including their optimization strategies in both modular and end-to-end approaches, with a particular focus on how LLMs can address existing problems and challenges in current solutions. Furthermore, we explore an important question: Can LLM-based artificial general intelligence (AGI) serve as a key for achieving high-level AD? We also analyze the potential limitations and challenges LLMs may face in advancing AD technology and extend the discussion to societal considerations, including critical safety and security concerns. This survey aims to provide a foundational reference for cross-disciplinary researchers and help guide future research directions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering
Engineering Environmental Science-Environmental Engineering
自引率
1.60%
发文量
335
审稿时长
35 days
期刊介绍: Engineering, an international open-access journal initiated by the Chinese Academy of Engineering (CAE) in 2015, serves as a distinguished platform for disseminating cutting-edge advancements in engineering R&D, sharing major research outputs, and highlighting key achievements worldwide. The journal's objectives encompass reporting progress in engineering science, fostering discussions on hot topics, addressing areas of interest, challenges, and prospects in engineering development, while considering human and environmental well-being and ethics in engineering. It aims to inspire breakthroughs and innovations with profound economic and social significance, propelling them to advanced international standards and transforming them into a new productive force. Ultimately, this endeavor seeks to bring about positive changes globally, benefit humanity, and shape a new future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信