新生抗生素设计的生成式深度学习方法

IF 42.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Cell Pub Date : 2025-08-14 DOI:10.1016/j.cell.2025.07.033
Aarti Krishnan, Melis N. Anahtar, Jacqueline A. Valeri, Wengong Jin, Nina M. Donghia, Leif Sieben, Andreas Luttens, Yu Zhang, Seyed Majed Modaresi, Andrew Hennes, Jenna Fromer, Parijat Bandyopadhyay, Jonathan C. Chen, Danyal Rehman, Ronak Desai, Paige Edwards, Ryan S. Lach, Marie-Stéphanie Aschtgen, Margaux Gaborieau, Massimiliano Gaetani, James J. Collins
{"title":"新生抗生素设计的生成式深度学习方法","authors":"Aarti Krishnan, Melis N. Anahtar, Jacqueline A. Valeri, Wengong Jin, Nina M. Donghia, Leif Sieben, Andreas Luttens, Yu Zhang, Seyed Majed Modaresi, Andrew Hennes, Jenna Fromer, Parijat Bandyopadhyay, Jonathan C. Chen, Danyal Rehman, Ronak Desai, Paige Edwards, Ryan S. Lach, Marie-Stéphanie Aschtgen, Margaux Gaborieau, Massimiliano Gaetani, James J. Collins","doi":"10.1016/j.cell.2025.07.033","DOIUrl":null,"url":null,"abstract":"The antimicrobial resistance crisis necessitates structurally distinct antibiotics. While deep learning approaches can identify antibacterial compounds from existing libraries, structural novelty remains limited. Here, we developed a generative artificial intelligence framework for designing <em>de novo</em> antibiotics through two approaches: a fragment-based method to comprehensively screen &gt;10<sup>7</sup> chemical fragments <em>in silico</em> against <em>Neisseria gonorrhoeae</em> or <em>Staphylococcus aureus</em>, subsequently expanding promising fragments, and an unconstrained <em>de novo</em> compound generation, each using genetic algorithms and variational autoencoders. Of 24 synthesized compounds, seven demonstrated selective antibacterial activity. Two lead compounds exhibited bactericidal efficacy against multidrug-resistant isolates with distinct mechanisms of action and reduced bacterial burden <em>in vivo</em> in mouse models of <em>N. gonorrhoeae</em> vaginal infection and methicillin-resistant <em>S. aureus</em> skin infection. We further validated structural analogs for both compound classes as antibacterial. Our approach enables the generative deep-learning-guided design of <em>de novo</em> antibiotics, providing a platform for mapping uncharted regions of chemical space.","PeriodicalId":9656,"journal":{"name":"Cell","volume":"24 1","pages":""},"PeriodicalIF":42.5000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A generative deep learning approach to de novo antibiotic design\",\"authors\":\"Aarti Krishnan, Melis N. Anahtar, Jacqueline A. Valeri, Wengong Jin, Nina M. Donghia, Leif Sieben, Andreas Luttens, Yu Zhang, Seyed Majed Modaresi, Andrew Hennes, Jenna Fromer, Parijat Bandyopadhyay, Jonathan C. Chen, Danyal Rehman, Ronak Desai, Paige Edwards, Ryan S. Lach, Marie-Stéphanie Aschtgen, Margaux Gaborieau, Massimiliano Gaetani, James J. Collins\",\"doi\":\"10.1016/j.cell.2025.07.033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The antimicrobial resistance crisis necessitates structurally distinct antibiotics. While deep learning approaches can identify antibacterial compounds from existing libraries, structural novelty remains limited. Here, we developed a generative artificial intelligence framework for designing <em>de novo</em> antibiotics through two approaches: a fragment-based method to comprehensively screen &gt;10<sup>7</sup> chemical fragments <em>in silico</em> against <em>Neisseria gonorrhoeae</em> or <em>Staphylococcus aureus</em>, subsequently expanding promising fragments, and an unconstrained <em>de novo</em> compound generation, each using genetic algorithms and variational autoencoders. Of 24 synthesized compounds, seven demonstrated selective antibacterial activity. Two lead compounds exhibited bactericidal efficacy against multidrug-resistant isolates with distinct mechanisms of action and reduced bacterial burden <em>in vivo</em> in mouse models of <em>N. gonorrhoeae</em> vaginal infection and methicillin-resistant <em>S. aureus</em> skin infection. We further validated structural analogs for both compound classes as antibacterial. Our approach enables the generative deep-learning-guided design of <em>de novo</em> antibiotics, providing a platform for mapping uncharted regions of chemical space.\",\"PeriodicalId\":9656,\"journal\":{\"name\":\"Cell\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":42.5000,\"publicationDate\":\"2025-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cell.2025.07.033\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cell.2025.07.033","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

抗菌素耐药性危机需要结构不同的抗生素。虽然深度学习方法可以从现有的文库中识别抗菌化合物,但结构的新颖性仍然有限。在这里,我们通过两种方法开发了一个生成式人工智能框架,用于设计新生抗生素:基于片段的方法,全面筛选107个针对淋病奈瑟菌或金黄色葡萄球菌的化学片段,随后扩展有希望的片段,以及不受约束的新生化合物生成,每一种方法都使用遗传算法和变分自编码器。在所合成的24个化合物中,有7个具有选择性抗菌活性。在淋病奈瑟菌阴道感染和耐甲氧西林金黄色葡萄球菌皮肤感染小鼠模型中,两种铅化合物对多重耐药分离株具有不同作用机制的抗菌效果,并减少了体内细菌负荷。我们进一步验证了这两类化合物的结构类似物的抗菌作用。我们的方法使生成式深度学习引导的新抗生素设计成为可能,为绘制化学空间的未知区域提供了一个平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A generative deep learning approach to de novo antibiotic design

A generative deep learning approach to de novo antibiotic design
The antimicrobial resistance crisis necessitates structurally distinct antibiotics. While deep learning approaches can identify antibacterial compounds from existing libraries, structural novelty remains limited. Here, we developed a generative artificial intelligence framework for designing de novo antibiotics through two approaches: a fragment-based method to comprehensively screen >107 chemical fragments in silico against Neisseria gonorrhoeae or Staphylococcus aureus, subsequently expanding promising fragments, and an unconstrained de novo compound generation, each using genetic algorithms and variational autoencoders. Of 24 synthesized compounds, seven demonstrated selective antibacterial activity. Two lead compounds exhibited bactericidal efficacy against multidrug-resistant isolates with distinct mechanisms of action and reduced bacterial burden in vivo in mouse models of N. gonorrhoeae vaginal infection and methicillin-resistant S. aureus skin infection. We further validated structural analogs for both compound classes as antibacterial. Our approach enables the generative deep-learning-guided design of de novo antibiotics, providing a platform for mapping uncharted regions of chemical space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell
Cell 生物-生化与分子生物学
CiteScore
110.00
自引率
0.80%
发文量
396
审稿时长
2 months
期刊介绍: Cells is an international, peer-reviewed, open access journal that focuses on cell biology, molecular biology, and biophysics. It is affiliated with several societies, including the Spanish Society for Biochemistry and Molecular Biology (SEBBM), Nordic Autophagy Society (NAS), Spanish Society of Hematology and Hemotherapy (SEHH), and Society for Regenerative Medicine (Russian Federation) (RPO). The journal publishes research findings of significant importance in various areas of experimental biology, such as cell biology, molecular biology, neuroscience, immunology, virology, microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. The primary criterion for considering papers is whether the results contribute to significant conceptual advances or raise thought-provoking questions and hypotheses related to interesting and important biological inquiries. In addition to primary research articles presented in four formats, Cells also features review and opinion articles in its "leading edge" section, discussing recent research advancements and topics of interest to its wide readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信