优化压缩,在大相位噪声下实现精确的差分传感

IF 5 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Robin Corgier, Marco Malitesta, Leonid A Sidorenkov, Franck Pereira Dos Santos, Gabriele Rosi, Guglielmo M Tino, Augusto Smerzi, Leonardo Salvi and Luca Pezzé
{"title":"优化压缩,在大相位噪声下实现精确的差分传感","authors":"Robin Corgier, Marco Malitesta, Leonid A Sidorenkov, Franck Pereira Dos Santos, Gabriele Rosi, Guglielmo M Tino, Augusto Smerzi, Leonardo Salvi and Luca Pezzé","doi":"10.1088/2058-9565/adf2d8","DOIUrl":null,"url":null,"abstract":"Atom interferometers are reaching sensitivities fundamentally constrained by quantum fluctuations. A main challenge is to integrate entanglement into quantum sensing protocols to enhance precision while ensuring robustness against noise and systematics. Here, we theoretically investigate differential phase measurements with two atom interferometers using spin-squeezed states of N atoms, accounting for common-mode phase noise spanning the full 2π range. We estimate the differential signal using model-free ellipse fitting, a robust method requiring no device calibration and resilient to additional noise sources. Our results show that spin-squeezing enables sensitivities below the standard quantum limit (SQL). Specifically, we identify optimal squeezed states that minimize the differential phase uncertainty, scaling as , thus overcoming the SQL by a factor , while eliminating the bias inherent in ellipse fitting methods. We benchmark our protocol against the Cramér–Rao bound and compare it with hybrid methods that incorporate auxiliary classical sensors. Our findings provide a pathway to robust and high-precision atom interferometry, in realistic noisy environments and using readily available states and estimation methods.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"48 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimized squeezing for accurate differential sensing under large phase noise\",\"authors\":\"Robin Corgier, Marco Malitesta, Leonid A Sidorenkov, Franck Pereira Dos Santos, Gabriele Rosi, Guglielmo M Tino, Augusto Smerzi, Leonardo Salvi and Luca Pezzé\",\"doi\":\"10.1088/2058-9565/adf2d8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Atom interferometers are reaching sensitivities fundamentally constrained by quantum fluctuations. A main challenge is to integrate entanglement into quantum sensing protocols to enhance precision while ensuring robustness against noise and systematics. Here, we theoretically investigate differential phase measurements with two atom interferometers using spin-squeezed states of N atoms, accounting for common-mode phase noise spanning the full 2π range. We estimate the differential signal using model-free ellipse fitting, a robust method requiring no device calibration and resilient to additional noise sources. Our results show that spin-squeezing enables sensitivities below the standard quantum limit (SQL). Specifically, we identify optimal squeezed states that minimize the differential phase uncertainty, scaling as , thus overcoming the SQL by a factor , while eliminating the bias inherent in ellipse fitting methods. We benchmark our protocol against the Cramér–Rao bound and compare it with hybrid methods that incorporate auxiliary classical sensors. Our findings provide a pathway to robust and high-precision atom interferometry, in realistic noisy environments and using readily available states and estimation methods.\",\"PeriodicalId\":20821,\"journal\":{\"name\":\"Quantum Science and Technology\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Science and Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2058-9565/adf2d8\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/adf2d8","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

原子干涉仪的灵敏度基本上受到量子涨落的限制。一个主要的挑战是将纠缠集成到量子传感协议中,以提高精度,同时确保对噪声和系统性的鲁棒性。在这里,我们从理论上研究了两个原子干涉仪使用N原子的自旋压缩态的微分相位测量,考虑了跨越整个2π范围的共模相位噪声。我们使用无模型椭圆拟合来估计差分信号,这是一种不需要设备校准且对附加噪声源具有弹性的鲁棒方法。我们的结果表明,自旋压缩可以使灵敏度低于标准量子极限(SQL)。具体来说,我们确定了将微分相位不确定性最小化的最佳压缩状态,缩放为,从而克服了SQL的一个因素,同时消除了椭圆拟合方法中固有的偏差。我们根据cram - rao边界对我们的协议进行了基准测试,并将其与包含辅助经典传感器的混合方法进行了比较。我们的发现为鲁棒和高精度原子干涉测量提供了一条途径,在现实的嘈杂环境中,使用现成的状态和估计方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimized squeezing for accurate differential sensing under large phase noise
Atom interferometers are reaching sensitivities fundamentally constrained by quantum fluctuations. A main challenge is to integrate entanglement into quantum sensing protocols to enhance precision while ensuring robustness against noise and systematics. Here, we theoretically investigate differential phase measurements with two atom interferometers using spin-squeezed states of N atoms, accounting for common-mode phase noise spanning the full 2π range. We estimate the differential signal using model-free ellipse fitting, a robust method requiring no device calibration and resilient to additional noise sources. Our results show that spin-squeezing enables sensitivities below the standard quantum limit (SQL). Specifically, we identify optimal squeezed states that minimize the differential phase uncertainty, scaling as , thus overcoming the SQL by a factor , while eliminating the bias inherent in ellipse fitting methods. We benchmark our protocol against the Cramér–Rao bound and compare it with hybrid methods that incorporate auxiliary classical sensors. Our findings provide a pathway to robust and high-precision atom interferometry, in realistic noisy environments and using readily available states and estimation methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum Science and Technology
Quantum Science and Technology Materials Science-Materials Science (miscellaneous)
CiteScore
11.20
自引率
3.00%
发文量
133
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信