Jochen Schmidt, Dvir Radunsky, Patrick Scheibe, Carsten Jäger, Noam Ben-Eliezer, Robert Trampel, Nikolaus Weiskopf
{"title":"使用多回波自旋回波序列和基于字典的建模,在7 T时对人脑进行高分辨率定量T2映射。","authors":"Jochen Schmidt, Dvir Radunsky, Patrick Scheibe, Carsten Jäger, Noam Ben-Eliezer, Robert Trampel, Nikolaus Weiskopf","doi":"10.1162/IMAG.a.81","DOIUrl":null,"url":null,"abstract":"<p><p>Quantitative <math> <mrow><msub><mtext>T</mtext> <mn>2</mn></msub> </mrow> </math> mapping offers a unique contrast for detailed brain imaging. At ultra-high field strengths (7 T), the higher signal-to-noise ratio (SNR) enables higher spatial resolution and the delineation of smaller structures. The translation of multi-echo spin-echo-based acquisitions to higher field strength, however, is complicated by inhomogeneities in the radio frequency (RF) transmit field resulting in stronger stimulated echoes and multi-echo refocusing pathways. The <math> <mrow><msub><mtext>T</mtext> <mn>2</mn></msub> </mrow> </math> decay will thus depend on the specific sequence details and other experimental properties. The signal can be modeled by Bloch equation simulations to create a dictionary of possible signal patterns to fit the experimental data and estimate <math> <mrow><msub><mtext>T</mtext> <mn>2</mn></msub> </mrow> </math> . Particularly at smaller voxel sizes and shorter <math> <mrow><msub><mtext>T</mtext> <mn>2</mn></msub> </mrow> </math> times, noise will affect the dictionary matching of the data by the introduction of a bias in the acquired signal magnitude dependent on the SNR. This study aims to develop a robust, accurate, and fast <math> <mrow><msub><mtext>T</mtext> <mn>2</mn></msub> </mrow> </math> mapping approach at 7 T, addressing RF inhomogeneity and noise bias. We employed a 2D multi-echo spin-echo sequence combined with a Bloch equation simulation-aided dictionary matching technique. The method incorporated a pre-measured <math> <mrow><msubsup><mtext>B</mtext> <mn>1</mn> <mo>+</mo></msubsup> </mrow> </math> map for regularization of the dictionary fit and applied a patch-based PCA denoising algorithm with magnitude bias correction to mitigate noise-induced errors. The method was tested in simulations, phantom validations, and in five human participants. In vivo, <math> <mrow> <msup> <mrow><mrow><mo>(</mo> <mrow><mn>0.7</mn> <mo> </mo> <mi>m</mi> <mi>m</mi></mrow> <mo>)</mo></mrow> </mrow> <mn>3</mn></msup> </mrow> </math> isotropic high-resolution <math> <mrow><msub><mtext>T</mtext> <mn>2</mn></msub> </mrow> </math> maps showed detailed contrast within cortical and subcortical areas. Notably, regions with high iron content, such as the substantia nigra or nucleus ruber, were distinctly visible. The proposed method provided consistent <math> <mrow><msub><mtext>T</mtext> <mn>2</mn></msub> </mrow> </math> values across different brain regions that aligned well with the literature where available. Simulations and experiments demonstrated the importance of the noise correction to achieve high-quality maps. The proposed method can significantly contribute to studies on brain microstructure and pathology, since it produces reliable <math> <mrow><msub><mtext>T</mtext> <mn>2</mn></msub> </mrow> </math> maps at high resolution.</p>","PeriodicalId":73341,"journal":{"name":"Imaging neuroscience (Cambridge, Mass.)","volume":"3 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12330843/pdf/","citationCount":"0","resultStr":"{\"title\":\"High-resolution quantitative T<sub>2</sub> mapping of the human brain at 7 T using a multi-echo spin-echo sequence and dictionary-based modeling.\",\"authors\":\"Jochen Schmidt, Dvir Radunsky, Patrick Scheibe, Carsten Jäger, Noam Ben-Eliezer, Robert Trampel, Nikolaus Weiskopf\",\"doi\":\"10.1162/IMAG.a.81\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Quantitative <math> <mrow><msub><mtext>T</mtext> <mn>2</mn></msub> </mrow> </math> mapping offers a unique contrast for detailed brain imaging. At ultra-high field strengths (7 T), the higher signal-to-noise ratio (SNR) enables higher spatial resolution and the delineation of smaller structures. The translation of multi-echo spin-echo-based acquisitions to higher field strength, however, is complicated by inhomogeneities in the radio frequency (RF) transmit field resulting in stronger stimulated echoes and multi-echo refocusing pathways. The <math> <mrow><msub><mtext>T</mtext> <mn>2</mn></msub> </mrow> </math> decay will thus depend on the specific sequence details and other experimental properties. The signal can be modeled by Bloch equation simulations to create a dictionary of possible signal patterns to fit the experimental data and estimate <math> <mrow><msub><mtext>T</mtext> <mn>2</mn></msub> </mrow> </math> . Particularly at smaller voxel sizes and shorter <math> <mrow><msub><mtext>T</mtext> <mn>2</mn></msub> </mrow> </math> times, noise will affect the dictionary matching of the data by the introduction of a bias in the acquired signal magnitude dependent on the SNR. This study aims to develop a robust, accurate, and fast <math> <mrow><msub><mtext>T</mtext> <mn>2</mn></msub> </mrow> </math> mapping approach at 7 T, addressing RF inhomogeneity and noise bias. We employed a 2D multi-echo spin-echo sequence combined with a Bloch equation simulation-aided dictionary matching technique. The method incorporated a pre-measured <math> <mrow><msubsup><mtext>B</mtext> <mn>1</mn> <mo>+</mo></msubsup> </mrow> </math> map for regularization of the dictionary fit and applied a patch-based PCA denoising algorithm with magnitude bias correction to mitigate noise-induced errors. The method was tested in simulations, phantom validations, and in five human participants. In vivo, <math> <mrow> <msup> <mrow><mrow><mo>(</mo> <mrow><mn>0.7</mn> <mo> </mo> <mi>m</mi> <mi>m</mi></mrow> <mo>)</mo></mrow> </mrow> <mn>3</mn></msup> </mrow> </math> isotropic high-resolution <math> <mrow><msub><mtext>T</mtext> <mn>2</mn></msub> </mrow> </math> maps showed detailed contrast within cortical and subcortical areas. Notably, regions with high iron content, such as the substantia nigra or nucleus ruber, were distinctly visible. The proposed method provided consistent <math> <mrow><msub><mtext>T</mtext> <mn>2</mn></msub> </mrow> </math> values across different brain regions that aligned well with the literature where available. Simulations and experiments demonstrated the importance of the noise correction to achieve high-quality maps. The proposed method can significantly contribute to studies on brain microstructure and pathology, since it produces reliable <math> <mrow><msub><mtext>T</mtext> <mn>2</mn></msub> </mrow> </math> maps at high resolution.</p>\",\"PeriodicalId\":73341,\"journal\":{\"name\":\"Imaging neuroscience (Cambridge, Mass.)\",\"volume\":\"3 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12330843/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Imaging neuroscience (Cambridge, Mass.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1162/IMAG.a.81\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Imaging neuroscience (Cambridge, Mass.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1162/IMAG.a.81","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
定量t2映射为详细的脑成像提供了独特的对比。在超高场强(7 T)下,更高的信噪比(SNR)可以实现更高的空间分辨率和更小结构的描绘。然而,射频(RF)发射场的不均匀性导致更强的受激回波和多回波重聚焦路径,使基于自旋回波的多回波采集向更高场强的转化变得复杂。因此,t2衰减将取决于特定的序列细节和其他实验性质。信号可以通过布洛赫方程模拟来建模,以创建一个可能的信号模式字典来拟合实验数据和估计t2。特别是在较小的体素尺寸和较短的t2倍时,噪声将通过引入依赖于信噪比的获取信号幅度的偏置来影响数据的字典匹配。本研究旨在开发一种在7 T下稳健、准确、快速的t2映射方法,解决射频不均匀性和噪声偏差。我们采用二维多回波自旋回波序列结合Bloch方程模拟辅助字典匹配技术。该方法采用预先测量的b1 +地图对字典拟合进行正则化,并采用基于斑块的PCA去噪算法,并进行幅度偏差校正,以减轻噪声引起的误差。该方法在模拟、幻影验证和五名人类参与者中进行了测试。在体内,(0.7 m m) 3各向同性高分辨率t2图显示了皮层和皮层下区域的详细对比。值得注意的是,含有高铁含量的区域,如黑质或橡胶核,明显可见。所提出的方法在不同的大脑区域提供了一致的t2值,这与文献中可用的一致。仿真和实验证明了噪声校正对获得高质量地图的重要性。所提出的方法可以产生可靠的高分辨率t2图,对脑微观结构和病理的研究有重要贡献。
High-resolution quantitative T2 mapping of the human brain at 7 T using a multi-echo spin-echo sequence and dictionary-based modeling.
Quantitative mapping offers a unique contrast for detailed brain imaging. At ultra-high field strengths (7 T), the higher signal-to-noise ratio (SNR) enables higher spatial resolution and the delineation of smaller structures. The translation of multi-echo spin-echo-based acquisitions to higher field strength, however, is complicated by inhomogeneities in the radio frequency (RF) transmit field resulting in stronger stimulated echoes and multi-echo refocusing pathways. The decay will thus depend on the specific sequence details and other experimental properties. The signal can be modeled by Bloch equation simulations to create a dictionary of possible signal patterns to fit the experimental data and estimate . Particularly at smaller voxel sizes and shorter times, noise will affect the dictionary matching of the data by the introduction of a bias in the acquired signal magnitude dependent on the SNR. This study aims to develop a robust, accurate, and fast mapping approach at 7 T, addressing RF inhomogeneity and noise bias. We employed a 2D multi-echo spin-echo sequence combined with a Bloch equation simulation-aided dictionary matching technique. The method incorporated a pre-measured map for regularization of the dictionary fit and applied a patch-based PCA denoising algorithm with magnitude bias correction to mitigate noise-induced errors. The method was tested in simulations, phantom validations, and in five human participants. In vivo, isotropic high-resolution maps showed detailed contrast within cortical and subcortical areas. Notably, regions with high iron content, such as the substantia nigra or nucleus ruber, were distinctly visible. The proposed method provided consistent values across different brain regions that aligned well with the literature where available. Simulations and experiments demonstrated the importance of the noise correction to achieve high-quality maps. The proposed method can significantly contribute to studies on brain microstructure and pathology, since it produces reliable maps at high resolution.