基于深度学习方法的锂离子电池高效估计和聚类。

Jie Wu, Zhongxian Sun, Dingquan Li, Weilin He, Dongchen Yang, Zhenguo Wu, Xin Geng, Hui Yang, Hailong Wang, Linyu Hu, Haiyan Tu, Xin He
{"title":"基于深度学习方法的锂离子电池高效估计和聚类。","authors":"Jie Wu, Zhongxian Sun, Dingquan Li, Weilin He, Dongchen Yang, Zhenguo Wu, Xin Geng, Hui Yang, Hailong Wang, Linyu Hu, Haiyan Tu, Xin He","doi":"10.1038/s44172-025-00488-1","DOIUrl":null,"url":null,"abstract":"<p><p>Growing energy storage demand has solidified the dominance of lithium-ion batteries (LIBs) in modern societies but intensifies recycling pressures. Precise state-of-health (SOH) assessment is crucial to grouping retired batteries from an unknown state for secondary utilization. However, batteries in the pack exhibit distinct capacity fading behaviors due to their service scenarios and working conditions. We develop a deep-learning framework for rapid, transferable SOH estimation and battery classification. This framework integrates deep neural networks with interconnected electrochemical, mechanical, and thermal features. Our model delivers optimal accuracy with a mean absolute error (MAE) of 0.822% and a root mean square error (RMSE) of 1.048% using combined features. It demonstrates robust performance across various conditions and enables SOH prediction with data from merely one previous cycle. Moreover, the well-trained model could adapt to other electrode systems with a minimal number of additional samples. This work highlights critical features for SOH estimation and enables efficient battery classification toward sustainable recycling.</p>","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":"4 1","pages":"151"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12344010/pdf/","citationCount":"0","resultStr":"{\"title\":\"Efficient estimating and clustering lithium-ion batteries with a deep-learning approach.\",\"authors\":\"Jie Wu, Zhongxian Sun, Dingquan Li, Weilin He, Dongchen Yang, Zhenguo Wu, Xin Geng, Hui Yang, Hailong Wang, Linyu Hu, Haiyan Tu, Xin He\",\"doi\":\"10.1038/s44172-025-00488-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Growing energy storage demand has solidified the dominance of lithium-ion batteries (LIBs) in modern societies but intensifies recycling pressures. Precise state-of-health (SOH) assessment is crucial to grouping retired batteries from an unknown state for secondary utilization. However, batteries in the pack exhibit distinct capacity fading behaviors due to their service scenarios and working conditions. We develop a deep-learning framework for rapid, transferable SOH estimation and battery classification. This framework integrates deep neural networks with interconnected electrochemical, mechanical, and thermal features. Our model delivers optimal accuracy with a mean absolute error (MAE) of 0.822% and a root mean square error (RMSE) of 1.048% using combined features. It demonstrates robust performance across various conditions and enables SOH prediction with data from merely one previous cycle. Moreover, the well-trained model could adapt to other electrode systems with a minimal number of additional samples. This work highlights critical features for SOH estimation and enables efficient battery classification toward sustainable recycling.</p>\",\"PeriodicalId\":72644,\"journal\":{\"name\":\"Communications engineering\",\"volume\":\"4 1\",\"pages\":\"151\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12344010/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s44172-025-00488-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44172-025-00488-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

不断增长的储能需求巩固了锂离子电池(lib)在现代社会中的主导地位,但也加剧了回收压力。精确的健康状态(SOH)评估对于将处于未知状态的退役电池分组以进行二次利用至关重要。然而,电池组中的电池由于其使用场景和工作条件而表现出明显的容量衰减行为。我们开发了一个深度学习框架,用于快速,可转移的SOH估计和电池分类。该框架集成了具有相互连接的电化学、机械和热特征的深度神经网络。我们的模型使用组合特征提供了最佳精度,平均绝对误差(MAE)为0.822%,均方根误差(RMSE)为1.048%。它展示了在各种条件下的强大性能,并且仅使用前一个周期的数据就可以预测SOH。此外,训练良好的模型可以适应其他电极系统与最少数量的额外样品。这项工作突出了SOH估计的关键特征,并实现了有效的电池分类,以实现可持续回收。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient estimating and clustering lithium-ion batteries with a deep-learning approach.

Growing energy storage demand has solidified the dominance of lithium-ion batteries (LIBs) in modern societies but intensifies recycling pressures. Precise state-of-health (SOH) assessment is crucial to grouping retired batteries from an unknown state for secondary utilization. However, batteries in the pack exhibit distinct capacity fading behaviors due to their service scenarios and working conditions. We develop a deep-learning framework for rapid, transferable SOH estimation and battery classification. This framework integrates deep neural networks with interconnected electrochemical, mechanical, and thermal features. Our model delivers optimal accuracy with a mean absolute error (MAE) of 0.822% and a root mean square error (RMSE) of 1.048% using combined features. It demonstrates robust performance across various conditions and enables SOH prediction with data from merely one previous cycle. Moreover, the well-trained model could adapt to other electrode systems with a minimal number of additional samples. This work highlights critical features for SOH estimation and enables efficient battery classification toward sustainable recycling.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信