功率驱动的电穿孔以电导率独立的方式预测治疗结果。

IF 7.7 Q1 ENGINEERING, BIOMEDICAL
BME frontiers Pub Date : 2025-08-12 eCollection Date: 2025-01-01 DOI:10.34133/bmef.0169
Edward J Jacobs, Julio P Arroyo, Manali Powar, Pedro P Santos, Irving Allen, Rafael Davalos
{"title":"功率驱动的电穿孔以电导率独立的方式预测治疗结果。","authors":"Edward J Jacobs, Julio P Arroyo, Manali Powar, Pedro P Santos, Irving Allen, Rafael Davalos","doi":"10.34133/bmef.0169","DOIUrl":null,"url":null,"abstract":"<p><p><b>Objective:</b> This study characterizes the effects of external conductivity on electroporation to develop methods to overcome potential patient-to-patient variability. <b>Impact Statement:</b> We demonstrate that constant power pulsed electric fields (PEFs) achieve consistent treatment outcomes despite variations in conductivity, thereby improving the predictability and efficacy of electroporation-based therapies. <b>Introduction:</b> Electropermeabilization-based therapies typically deliver static voltages between electrodes to induce cell permeabilization. However, tissue conductivity variations introduce uncertainty in treatment outcomes, as the tissue-specific electric field thresholds that induce electroporation also depend on the extracellular conductivity. <b>Methods:</b> Cell-laden hydrogels were fabricated with varying extracellular conductivities and treated with constant voltage PEFs. The voltages and currents were recorded to calculate the applied powers, and the reversible and irreversible electroporation thresholds were quantified using cell-impermeant and viability assays. Homogeneous and heterogeneous multi-tissue finite element models were employed to simulate the impact of tumor conductivity variability on the outcomes of reversible and irreversible electroporation for constant applied voltage, current, and power PEFs. Additionally, an in vivo murine pancreatic tumor model assessed the correlation between PEF delivery and treatment efficacy. <b>Results:</b> The In vitro experiments revealed that the electric field and current density thresholds were conductivity dependent, whereas the power density thresholds remained stable under variable conductivities. Computational modeling indicated that constant power PEFs best predicted tumor coverage in both homogeneous and heterogeneous multi-tissue models. Similarly, the in vivo tumor responses were also better predicted by applied power rather than voltage or current alone. <b>Conclusions:</b> Applying constant power PEFs enables consistent electroporation outcomes despite variations in conductivity.</p>","PeriodicalId":72430,"journal":{"name":"BME frontiers","volume":"6 ","pages":"0169"},"PeriodicalIF":7.7000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12343028/pdf/","citationCount":"0","resultStr":"{\"title\":\"Power-Driven Electroporation Is Predictive of Treatment Outcomes in a Conductivity-Independent Manner.\",\"authors\":\"Edward J Jacobs, Julio P Arroyo, Manali Powar, Pedro P Santos, Irving Allen, Rafael Davalos\",\"doi\":\"10.34133/bmef.0169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Objective:</b> This study characterizes the effects of external conductivity on electroporation to develop methods to overcome potential patient-to-patient variability. <b>Impact Statement:</b> We demonstrate that constant power pulsed electric fields (PEFs) achieve consistent treatment outcomes despite variations in conductivity, thereby improving the predictability and efficacy of electroporation-based therapies. <b>Introduction:</b> Electropermeabilization-based therapies typically deliver static voltages between electrodes to induce cell permeabilization. However, tissue conductivity variations introduce uncertainty in treatment outcomes, as the tissue-specific electric field thresholds that induce electroporation also depend on the extracellular conductivity. <b>Methods:</b> Cell-laden hydrogels were fabricated with varying extracellular conductivities and treated with constant voltage PEFs. The voltages and currents were recorded to calculate the applied powers, and the reversible and irreversible electroporation thresholds were quantified using cell-impermeant and viability assays. Homogeneous and heterogeneous multi-tissue finite element models were employed to simulate the impact of tumor conductivity variability on the outcomes of reversible and irreversible electroporation for constant applied voltage, current, and power PEFs. Additionally, an in vivo murine pancreatic tumor model assessed the correlation between PEF delivery and treatment efficacy. <b>Results:</b> The In vitro experiments revealed that the electric field and current density thresholds were conductivity dependent, whereas the power density thresholds remained stable under variable conductivities. Computational modeling indicated that constant power PEFs best predicted tumor coverage in both homogeneous and heterogeneous multi-tissue models. Similarly, the in vivo tumor responses were also better predicted by applied power rather than voltage or current alone. <b>Conclusions:</b> Applying constant power PEFs enables consistent electroporation outcomes despite variations in conductivity.</p>\",\"PeriodicalId\":72430,\"journal\":{\"name\":\"BME frontiers\",\"volume\":\"6 \",\"pages\":\"0169\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12343028/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BME frontiers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34133/bmef.0169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BME frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/bmef.0169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

目的:本研究表征外部电导率对电穿孔的影响,以开发克服患者间潜在差异的方法。影响声明:我们证明了恒定功率脉冲电场(pef)在电导率变化的情况下获得一致的治疗结果,从而提高了基于电穿孔的治疗的可预测性和有效性。导读:基于电透性的疗法通常在电极之间传递静态电压来诱导细胞透性。然而,组织电导率的变化会给治疗结果带来不确定性,因为诱发电穿孔的组织特异性电场阈值也取决于细胞外电导率。方法:制备具有不同细胞外电导率的载细胞水凝胶,用恒压脉冲电场处理。记录电压和电流以计算施加的功率,并通过细胞不均匀和活力测定定量可逆和不可逆电穿孔阈值。采用均匀和非均匀多组织有限元模型模拟恒定电压、电流和功率pef下肿瘤电导率可变性对可逆和不可逆电穿孔结果的影响。此外,体内小鼠胰腺肿瘤模型评估了PEF递送与治疗效果之间的相关性。结果:体外实验表明,电场和电流密度阈值与电导率有关,而功率密度阈值在变电导率下保持稳定。计算模型表明,恒定功率pef在均匀和非均匀多组织模型中都能最好地预测肿瘤覆盖。同样,体内肿瘤反应也可以通过施加的功率而不是单独的电压或电流来更好地预测。结论:尽管电导率不同,但应用恒功率pef可以实现一致的电穿孔结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Power-Driven Electroporation Is Predictive of Treatment Outcomes in a Conductivity-Independent Manner.

Objective: This study characterizes the effects of external conductivity on electroporation to develop methods to overcome potential patient-to-patient variability. Impact Statement: We demonstrate that constant power pulsed electric fields (PEFs) achieve consistent treatment outcomes despite variations in conductivity, thereby improving the predictability and efficacy of electroporation-based therapies. Introduction: Electropermeabilization-based therapies typically deliver static voltages between electrodes to induce cell permeabilization. However, tissue conductivity variations introduce uncertainty in treatment outcomes, as the tissue-specific electric field thresholds that induce electroporation also depend on the extracellular conductivity. Methods: Cell-laden hydrogels were fabricated with varying extracellular conductivities and treated with constant voltage PEFs. The voltages and currents were recorded to calculate the applied powers, and the reversible and irreversible electroporation thresholds were quantified using cell-impermeant and viability assays. Homogeneous and heterogeneous multi-tissue finite element models were employed to simulate the impact of tumor conductivity variability on the outcomes of reversible and irreversible electroporation for constant applied voltage, current, and power PEFs. Additionally, an in vivo murine pancreatic tumor model assessed the correlation between PEF delivery and treatment efficacy. Results: The In vitro experiments revealed that the electric field and current density thresholds were conductivity dependent, whereas the power density thresholds remained stable under variable conductivities. Computational modeling indicated that constant power PEFs best predicted tumor coverage in both homogeneous and heterogeneous multi-tissue models. Similarly, the in vivo tumor responses were also better predicted by applied power rather than voltage or current alone. Conclusions: Applying constant power PEFs enables consistent electroporation outcomes despite variations in conductivity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信