利用广义双线性模型对单细胞RNA-seq进行基于模型的降维。

IF 2 3区 数学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Phillip B Nicol, Jeffrey W Miller
{"title":"利用广义双线性模型对单细胞RNA-seq进行基于模型的降维。","authors":"Phillip B Nicol, Jeffrey W Miller","doi":"10.1093/biostatistics/kxaf024","DOIUrl":null,"url":null,"abstract":"<p><p>Dimensionality reduction is a critical step in the analysis of single-cell RNA-seq (scRNA-seq) data. The standard approach is to apply a transformation to the count matrix followed by principal components analysis (PCA). However, this approach can induce spurious heterogeneity and mask true biological variability. An alternative approach is to directly model the counts, but existing methods tend to be computationally intractable on large datasets and do not quantify uncertainty in the low-dimensional representation. To address these problems, we develop scGBM, a novel method for model-based dimensionality reduction of scRNA-seq data using a Poisson bilinear model. We introduce a fast estimation algorithm to fit the model using iteratively reweighted singular value decompositions, enabling the method to scale to datasets with millions of cells. Furthermore, scGBM quantifies the uncertainty in each cell's latent position and leverages these uncertainties to assess the confidence associated with a given cell clustering. On real and simulated single-cell data, we find that scGBM produces low-dimensional embeddings that better capture relevant biological information while removing unwanted variation.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":"26 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12342792/pdf/","citationCount":"0","resultStr":"{\"title\":\"Model-based dimensionality reduction for single-cell RNA-seq using generalized bilinear models.\",\"authors\":\"Phillip B Nicol, Jeffrey W Miller\",\"doi\":\"10.1093/biostatistics/kxaf024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dimensionality reduction is a critical step in the analysis of single-cell RNA-seq (scRNA-seq) data. The standard approach is to apply a transformation to the count matrix followed by principal components analysis (PCA). However, this approach can induce spurious heterogeneity and mask true biological variability. An alternative approach is to directly model the counts, but existing methods tend to be computationally intractable on large datasets and do not quantify uncertainty in the low-dimensional representation. To address these problems, we develop scGBM, a novel method for model-based dimensionality reduction of scRNA-seq data using a Poisson bilinear model. We introduce a fast estimation algorithm to fit the model using iteratively reweighted singular value decompositions, enabling the method to scale to datasets with millions of cells. Furthermore, scGBM quantifies the uncertainty in each cell's latent position and leverages these uncertainties to assess the confidence associated with a given cell clustering. On real and simulated single-cell data, we find that scGBM produces low-dimensional embeddings that better capture relevant biological information while removing unwanted variation.</p>\",\"PeriodicalId\":55357,\"journal\":{\"name\":\"Biostatistics\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12342792/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biostatistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biostatistics/kxaf024\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biostatistics/kxaf024","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

降维是单细胞RNA-seq (scRNA-seq)数据分析的关键步骤。标准的方法是对计数矩阵进行变换,然后进行主成分分析(PCA)。然而,这种方法可以诱导虚假的异质性和掩盖真正的生物变异性。另一种方法是直接对计数进行建模,但现有方法在大型数据集上往往难以计算,并且不能量化低维表示中的不确定性。为了解决这些问题,我们开发了scGBM,这是一种使用泊松双线性模型对scRNA-seq数据进行基于模型的降维的新方法。我们引入了一种快速估计算法,使用迭代重加权奇异值分解来拟合模型,使该方法能够扩展到具有数百万单元格的数据集。此外,scGBM量化了每个细胞潜在位置的不确定性,并利用这些不确定性来评估与给定细胞集群相关的置信度。在真实和模拟的单细胞数据中,我们发现scGBM产生的低维嵌入可以更好地捕获相关的生物信息,同时消除不必要的变异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model-based dimensionality reduction for single-cell RNA-seq using generalized bilinear models.

Dimensionality reduction is a critical step in the analysis of single-cell RNA-seq (scRNA-seq) data. The standard approach is to apply a transformation to the count matrix followed by principal components analysis (PCA). However, this approach can induce spurious heterogeneity and mask true biological variability. An alternative approach is to directly model the counts, but existing methods tend to be computationally intractable on large datasets and do not quantify uncertainty in the low-dimensional representation. To address these problems, we develop scGBM, a novel method for model-based dimensionality reduction of scRNA-seq data using a Poisson bilinear model. We introduce a fast estimation algorithm to fit the model using iteratively reweighted singular value decompositions, enabling the method to scale to datasets with millions of cells. Furthermore, scGBM quantifies the uncertainty in each cell's latent position and leverages these uncertainties to assess the confidence associated with a given cell clustering. On real and simulated single-cell data, we find that scGBM produces low-dimensional embeddings that better capture relevant biological information while removing unwanted variation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biostatistics
Biostatistics 生物-数学与计算生物学
CiteScore
5.10
自引率
4.80%
发文量
45
审稿时长
6-12 weeks
期刊介绍: Among the important scientific developments of the 20th century is the explosive growth in statistical reasoning and methods for application to studies of human health. Examples include developments in likelihood methods for inference, epidemiologic statistics, clinical trials, survival analysis, and statistical genetics. Substantive problems in public health and biomedical research have fueled the development of statistical methods, which in turn have improved our ability to draw valid inferences from data. The objective of Biostatistics is to advance statistical science and its application to problems of human health and disease, with the ultimate goal of advancing the public''s health.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信