Ural Koç, Emrah Karakaş, Ebru Akçapınar Sezer, Muhammed Said Beşler, Yaşar Alper Özkaya, Şehnaz Evrimler, Ahmet Yalçın, Hüseyin Alper Kızıloğlu, Uğur Kesimal, Meltem Oruç, İmran Çankaya, Duygu Koç Keleş, Neslihan Merd, Erdem Özkan, Numan İlteriş Çevik, Muhammet Batuhan Gökhan, Büşra Hayat, Mustafa Özer, Oğuzhan Tokur, Fatih Işık, Mehmet Alperen Tezcan, Muhammet Furkan Battal, Mecit Yüzkat, Nihat Barış Sebik, Fatih Karademir, Yasemin Topuz, Özgür Sezer, Songül Varlı, Erhan Akdoğan, Mustafa Mahir Ülgü, Şuayip Birinci
求助PDF
{"title":"MammosighTR:用于人工智能应用的BI-RADS注释的全国乳腺癌筛查乳房x线照片数据集。","authors":"Ural Koç, Emrah Karakaş, Ebru Akçapınar Sezer, Muhammed Said Beşler, Yaşar Alper Özkaya, Şehnaz Evrimler, Ahmet Yalçın, Hüseyin Alper Kızıloğlu, Uğur Kesimal, Meltem Oruç, İmran Çankaya, Duygu Koç Keleş, Neslihan Merd, Erdem Özkan, Numan İlteriş Çevik, Muhammet Batuhan Gökhan, Büşra Hayat, Mustafa Özer, Oğuzhan Tokur, Fatih Işık, Mehmet Alperen Tezcan, Muhammet Furkan Battal, Mecit Yüzkat, Nihat Barış Sebik, Fatih Karademir, Yasemin Topuz, Özgür Sezer, Songül Varlı, Erhan Akdoğan, Mustafa Mahir Ülgü, Şuayip Birinci","doi":"10.1148/ryai.240841","DOIUrl":null,"url":null,"abstract":"<p><p>The MammosighTR dataset, derived from Türkiye's national breast cancer screening mammography program, provides BI-RADS-labeled mammograms with detailed annotations on breast composition and lesion quadrant location, which may be useful for developing and testing AI models in breast cancer detection. ©RSNA, 2025.</p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":" ","pages":"e240841"},"PeriodicalIF":13.2000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MammosighTR: Nationwide Breast Cancer Screening Mammogram Dataset with BI-RADS Annotations for Artificial Intelligence Applications.\",\"authors\":\"Ural Koç, Emrah Karakaş, Ebru Akçapınar Sezer, Muhammed Said Beşler, Yaşar Alper Özkaya, Şehnaz Evrimler, Ahmet Yalçın, Hüseyin Alper Kızıloğlu, Uğur Kesimal, Meltem Oruç, İmran Çankaya, Duygu Koç Keleş, Neslihan Merd, Erdem Özkan, Numan İlteriş Çevik, Muhammet Batuhan Gökhan, Büşra Hayat, Mustafa Özer, Oğuzhan Tokur, Fatih Işık, Mehmet Alperen Tezcan, Muhammet Furkan Battal, Mecit Yüzkat, Nihat Barış Sebik, Fatih Karademir, Yasemin Topuz, Özgür Sezer, Songül Varlı, Erhan Akdoğan, Mustafa Mahir Ülgü, Şuayip Birinci\",\"doi\":\"10.1148/ryai.240841\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The MammosighTR dataset, derived from Türkiye's national breast cancer screening mammography program, provides BI-RADS-labeled mammograms with detailed annotations on breast composition and lesion quadrant location, which may be useful for developing and testing AI models in breast cancer detection. ©RSNA, 2025.</p>\",\"PeriodicalId\":29787,\"journal\":{\"name\":\"Radiology-Artificial Intelligence\",\"volume\":\" \",\"pages\":\"e240841\"},\"PeriodicalIF\":13.2000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiology-Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1148/ryai.240841\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiology-Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1148/ryai.240841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
引用
批量引用