MammosighTR:用于人工智能应用的BI-RADS注释的全国乳腺癌筛查乳房x线照片数据集。

IF 13.2 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Ural Koç, Emrah Karakaş, Ebru Akçapınar Sezer, Muhammed Said Beşler, Yaşar Alper Özkaya, Şehnaz Evrimler, Ahmet Yalçın, Hüseyin Alper Kızıloğlu, Uğur Kesimal, Meltem Oruç, İmran Çankaya, Duygu Koç Keleş, Neslihan Merd, Erdem Özkan, Numan İlteriş Çevik, Muhammet Batuhan Gökhan, Büşra Hayat, Mustafa Özer, Oğuzhan Tokur, Fatih Işık, Mehmet Alperen Tezcan, Muhammet Furkan Battal, Mecit Yüzkat, Nihat Barış Sebik, Fatih Karademir, Yasemin Topuz, Özgür Sezer, Songül Varlı, Erhan Akdoğan, Mustafa Mahir Ülgü, Şuayip Birinci
{"title":"MammosighTR:用于人工智能应用的BI-RADS注释的全国乳腺癌筛查乳房x线照片数据集。","authors":"Ural Koç, Emrah Karakaş, Ebru Akçapınar Sezer, Muhammed Said Beşler, Yaşar Alper Özkaya, Şehnaz Evrimler, Ahmet Yalçın, Hüseyin Alper Kızıloğlu, Uğur Kesimal, Meltem Oruç, İmran Çankaya, Duygu Koç Keleş, Neslihan Merd, Erdem Özkan, Numan İlteriş Çevik, Muhammet Batuhan Gökhan, Büşra Hayat, Mustafa Özer, Oğuzhan Tokur, Fatih Işık, Mehmet Alperen Tezcan, Muhammet Furkan Battal, Mecit Yüzkat, Nihat Barış Sebik, Fatih Karademir, Yasemin Topuz, Özgür Sezer, Songül Varlı, Erhan Akdoğan, Mustafa Mahir Ülgü, Şuayip Birinci","doi":"10.1148/ryai.240841","DOIUrl":null,"url":null,"abstract":"<p><p>The MammosighTR dataset, derived from Türkiye's national breast cancer screening mammography program, provides BI-RADS-labeled mammograms with detailed annotations on breast composition and lesion quadrant location, which may be useful for developing and testing AI models in breast cancer detection. ©RSNA, 2025.</p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":" ","pages":"e240841"},"PeriodicalIF":13.2000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MammosighTR: Nationwide Breast Cancer Screening Mammogram Dataset with BI-RADS Annotations for Artificial Intelligence Applications.\",\"authors\":\"Ural Koç, Emrah Karakaş, Ebru Akçapınar Sezer, Muhammed Said Beşler, Yaşar Alper Özkaya, Şehnaz Evrimler, Ahmet Yalçın, Hüseyin Alper Kızıloğlu, Uğur Kesimal, Meltem Oruç, İmran Çankaya, Duygu Koç Keleş, Neslihan Merd, Erdem Özkan, Numan İlteriş Çevik, Muhammet Batuhan Gökhan, Büşra Hayat, Mustafa Özer, Oğuzhan Tokur, Fatih Işık, Mehmet Alperen Tezcan, Muhammet Furkan Battal, Mecit Yüzkat, Nihat Barış Sebik, Fatih Karademir, Yasemin Topuz, Özgür Sezer, Songül Varlı, Erhan Akdoğan, Mustafa Mahir Ülgü, Şuayip Birinci\",\"doi\":\"10.1148/ryai.240841\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The MammosighTR dataset, derived from Türkiye's national breast cancer screening mammography program, provides BI-RADS-labeled mammograms with detailed annotations on breast composition and lesion quadrant location, which may be useful for developing and testing AI models in breast cancer detection. ©RSNA, 2025.</p>\",\"PeriodicalId\":29787,\"journal\":{\"name\":\"Radiology-Artificial Intelligence\",\"volume\":\" \",\"pages\":\"e240841\"},\"PeriodicalIF\":13.2000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiology-Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1148/ryai.240841\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiology-Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1148/ryai.240841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

“刚刚接受”的论文经过了全面的同行评审,并已被接受发表在《放射学:人工智能》杂志上。这篇文章将经过编辑,布局和校样审查,然后在其最终版本出版。请注意,在最终编辑文章的制作过程中,可能会发现可能影响内容的错误。MammosighTR数据集来源于 rkiye的国家乳腺癌筛查乳房x光检查项目,它提供了bi - rads标记的乳房x光照片,并详细注释了乳房成分和病变象限的位置,这可能有助于开发和测试乳腺癌检测中的人工智能模型。©RSNA, 2025年。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MammosighTR: Nationwide Breast Cancer Screening Mammogram Dataset with BI-RADS Annotations for Artificial Intelligence Applications.

The MammosighTR dataset, derived from Türkiye's national breast cancer screening mammography program, provides BI-RADS-labeled mammograms with detailed annotations on breast composition and lesion quadrant location, which may be useful for developing and testing AI models in breast cancer detection. ©RSNA, 2025.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.20
自引率
1.00%
发文量
0
期刊介绍: Radiology: Artificial Intelligence is a bi-monthly publication that focuses on the emerging applications of machine learning and artificial intelligence in the field of imaging across various disciplines. This journal is available online and accepts multiple manuscript types, including Original Research, Technical Developments, Data Resources, Review articles, Editorials, Letters to the Editor and Replies, Special Reports, and AI in Brief.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信