利用聚糖基因特征建立简化的癌症亚型和预测模型。

IF 4.5 Q1 BIOCHEMICAL RESEARCH METHODS
Cell Reports Methods Pub Date : 2025-08-18 Epub Date: 2025-08-11 DOI:10.1016/j.crmeth.2025.101140
Jing Kai, Luyao Yang, Ayman F AbuElela, Alyaa M Abdel-Haleem, Asma S AlAmoodi, Abdulghani A Bin Nafisah, Alfadel Alshaibani, Ali S Alzahrani, Vincenzo Lagani, David Gomez-Cabrero, Xin Gao, Jasmeen S Merzaban
{"title":"利用聚糖基因特征建立简化的癌症亚型和预测模型。","authors":"Jing Kai, Luyao Yang, Ayman F AbuElela, Alyaa M Abdel-Haleem, Asma S AlAmoodi, Abdulghani A Bin Nafisah, Alfadel Alshaibani, Ali S Alzahrani, Vincenzo Lagani, David Gomez-Cabrero, Xin Gao, Jasmeen S Merzaban","doi":"10.1016/j.crmeth.2025.101140","DOIUrl":null,"url":null,"abstract":"<p><p>We identified a gene panel comprising 71 glycosyltransferases (GTs) that alter glycan patterns on cancer cells as they become more virulent. When these cancer-pattern GTs (CPGTs) were run through an algorithm trained on The Cancer Genome Atlas, they differentiated tumors from healthy tissue with 97% accuracy and clustered 27 cancers with 94% accuracy in external validation, revealing each variety's \"biometric glycan ID.\" Using machine learning, we built four models for cancer classification, including two for detecting the molecular subtypes of breast cancer and glioma using even smaller CPGT sets. Our results reveal the power of using glyco-genes for diagnostics: Our breast cancer classifier was almost twice as effective in independent testing as the widely used prediction analysis of microarray 50 (PAM50) subtyping kit at differentiating between luminal A, luminal B, HER2-enriched, and basal-like breast cancers based on a comparable number of genes. Only four GT genes were needed to build a prognostic model for glioma survival.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":" ","pages":"101140"},"PeriodicalIF":4.5000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12461624/pdf/","citationCount":"0","resultStr":"{\"title\":\"Building simplified cancer subtyping and prediction models with glycan gene signatures.\",\"authors\":\"Jing Kai, Luyao Yang, Ayman F AbuElela, Alyaa M Abdel-Haleem, Asma S AlAmoodi, Abdulghani A Bin Nafisah, Alfadel Alshaibani, Ali S Alzahrani, Vincenzo Lagani, David Gomez-Cabrero, Xin Gao, Jasmeen S Merzaban\",\"doi\":\"10.1016/j.crmeth.2025.101140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We identified a gene panel comprising 71 glycosyltransferases (GTs) that alter glycan patterns on cancer cells as they become more virulent. When these cancer-pattern GTs (CPGTs) were run through an algorithm trained on The Cancer Genome Atlas, they differentiated tumors from healthy tissue with 97% accuracy and clustered 27 cancers with 94% accuracy in external validation, revealing each variety's \\\"biometric glycan ID.\\\" Using machine learning, we built four models for cancer classification, including two for detecting the molecular subtypes of breast cancer and glioma using even smaller CPGT sets. Our results reveal the power of using glyco-genes for diagnostics: Our breast cancer classifier was almost twice as effective in independent testing as the widely used prediction analysis of microarray 50 (PAM50) subtyping kit at differentiating between luminal A, luminal B, HER2-enriched, and basal-like breast cancers based on a comparable number of genes. Only four GT genes were needed to build a prognostic model for glioma survival.</p>\",\"PeriodicalId\":29773,\"journal\":{\"name\":\"Cell Reports Methods\",\"volume\":\" \",\"pages\":\"101140\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12461624/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Reports Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.crmeth.2025.101140\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2025.101140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

我们确定了一个由71个糖基转移酶(GTs)组成的基因组,当癌细胞变得更具毒性时,它会改变癌细胞上的聚糖模式。当这些癌症模式gt (cpgt)通过癌症基因组图谱训练的算法运行时,它们以97%的准确率将肿瘤与健康组织区分开来,并在外部验证中以94%的准确率聚集27种癌症,揭示每个品种的“生物识别聚糖ID”。利用机器学习,我们建立了四个癌症分类模型,其中两个用于使用更小的CPGT集检测乳腺癌和胶质瘤的分子亚型。我们的研究结果揭示了使用糖基因进行诊断的力量:我们的乳腺癌分类器在独立测试中的有效性几乎是广泛使用的微阵列50 (PAM50)亚型试剂盒在基于相当数量的基因区分管腔A、管腔B、her2富集和基底样乳腺癌方面的预测分析的两倍。仅需要四个GT基因就可以建立胶质瘤生存的预后模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Building simplified cancer subtyping and prediction models with glycan gene signatures.

We identified a gene panel comprising 71 glycosyltransferases (GTs) that alter glycan patterns on cancer cells as they become more virulent. When these cancer-pattern GTs (CPGTs) were run through an algorithm trained on The Cancer Genome Atlas, they differentiated tumors from healthy tissue with 97% accuracy and clustered 27 cancers with 94% accuracy in external validation, revealing each variety's "biometric glycan ID." Using machine learning, we built four models for cancer classification, including two for detecting the molecular subtypes of breast cancer and glioma using even smaller CPGT sets. Our results reveal the power of using glyco-genes for diagnostics: Our breast cancer classifier was almost twice as effective in independent testing as the widely used prediction analysis of microarray 50 (PAM50) subtyping kit at differentiating between luminal A, luminal B, HER2-enriched, and basal-like breast cancers based on a comparable number of genes. Only four GT genes were needed to build a prognostic model for glioma survival.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Reports Methods
Cell Reports Methods Chemistry (General), Biochemistry, Genetics and Molecular Biology (General), Immunology and Microbiology (General)
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
111 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信