Yupeng Zhang, Shruti Choudhary, Anna Renström, Mikko Luomaranta, Maxime Chantreau, Verena Fleig, Ioana Gaboreanu, Carolin Grones, Ove Nilsson, Kathryn M Robinson, Hannele Tuominen
{"title":"揭示氮吸收和代谢:基因家族,表达动力学,和功能的见解在白杨(杨树)。","authors":"Yupeng Zhang, Shruti Choudhary, Anna Renström, Mikko Luomaranta, Maxime Chantreau, Verena Fleig, Ioana Gaboreanu, Carolin Grones, Ove Nilsson, Kathryn M Robinson, Hannele Tuominen","doi":"10.1093/treephys/tpaf099","DOIUrl":null,"url":null,"abstract":"<p><p>The influence of nitrogen on wood formation is well established. To gain insight into the underlying molecular mechanism, we first identified genes in fourteen gene families that are involved in nitrogen uptake and metabolism in European aspen (Populus tremula L.) genome annotation. Gene expression data from a de novo RNA sequencing (RNA-seq) analysis and data available from the AspWood database (plantgenie.org) provided putative candidate genes for the uptake of nitrate, ammonium and amino acids from the xylem sap as well as their further assimilation in the secondary xylem tissues of the stem. For a population-wide analysis of the nitrogen-related genes, we utilized RNA-seq data from the cambial region of the stems of 5-year-old aspen trees, representing 99 natural aspen accessions, and compared the expression of the nitrogen-related genes to stem diameter. Novel regulatory interactions were identified in expression quantitative loci and co-expression network analyses in these data. The expression of certain nitrate and amino acid transporters correlated negatively with stem diameter, suggesting that excessive nitrogen retrieval from the xylem sap suppresses radial growth of the stem. The expression of a glutamine synthetase correlated with the expression of these transporters, a link further supported by increased plant growth in transgenic glutamine synthetase overexpressing trees. This study provides insight into the genetic basis of nitrogen uptake and assimilation and its connection to wood formation, providing interesting targets for improving nitrogen use efficiency and growth of aspen trees.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unraveling Nitrogen Uptake and Metabolism: Gene Families, Expression Dynamics, and Functional Insights in Aspen (Populus tremula).\",\"authors\":\"Yupeng Zhang, Shruti Choudhary, Anna Renström, Mikko Luomaranta, Maxime Chantreau, Verena Fleig, Ioana Gaboreanu, Carolin Grones, Ove Nilsson, Kathryn M Robinson, Hannele Tuominen\",\"doi\":\"10.1093/treephys/tpaf099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The influence of nitrogen on wood formation is well established. To gain insight into the underlying molecular mechanism, we first identified genes in fourteen gene families that are involved in nitrogen uptake and metabolism in European aspen (Populus tremula L.) genome annotation. Gene expression data from a de novo RNA sequencing (RNA-seq) analysis and data available from the AspWood database (plantgenie.org) provided putative candidate genes for the uptake of nitrate, ammonium and amino acids from the xylem sap as well as their further assimilation in the secondary xylem tissues of the stem. For a population-wide analysis of the nitrogen-related genes, we utilized RNA-seq data from the cambial region of the stems of 5-year-old aspen trees, representing 99 natural aspen accessions, and compared the expression of the nitrogen-related genes to stem diameter. Novel regulatory interactions were identified in expression quantitative loci and co-expression network analyses in these data. The expression of certain nitrate and amino acid transporters correlated negatively with stem diameter, suggesting that excessive nitrogen retrieval from the xylem sap suppresses radial growth of the stem. The expression of a glutamine synthetase correlated with the expression of these transporters, a link further supported by increased plant growth in transgenic glutamine synthetase overexpressing trees. This study provides insight into the genetic basis of nitrogen uptake and assimilation and its connection to wood formation, providing interesting targets for improving nitrogen use efficiency and growth of aspen trees.</p>\",\"PeriodicalId\":23286,\"journal\":{\"name\":\"Tree physiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tree physiology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1093/treephys/tpaf099\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tree physiology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/treephys/tpaf099","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
Unraveling Nitrogen Uptake and Metabolism: Gene Families, Expression Dynamics, and Functional Insights in Aspen (Populus tremula).
The influence of nitrogen on wood formation is well established. To gain insight into the underlying molecular mechanism, we first identified genes in fourteen gene families that are involved in nitrogen uptake and metabolism in European aspen (Populus tremula L.) genome annotation. Gene expression data from a de novo RNA sequencing (RNA-seq) analysis and data available from the AspWood database (plantgenie.org) provided putative candidate genes for the uptake of nitrate, ammonium and amino acids from the xylem sap as well as their further assimilation in the secondary xylem tissues of the stem. For a population-wide analysis of the nitrogen-related genes, we utilized RNA-seq data from the cambial region of the stems of 5-year-old aspen trees, representing 99 natural aspen accessions, and compared the expression of the nitrogen-related genes to stem diameter. Novel regulatory interactions were identified in expression quantitative loci and co-expression network analyses in these data. The expression of certain nitrate and amino acid transporters correlated negatively with stem diameter, suggesting that excessive nitrogen retrieval from the xylem sap suppresses radial growth of the stem. The expression of a glutamine synthetase correlated with the expression of these transporters, a link further supported by increased plant growth in transgenic glutamine synthetase overexpressing trees. This study provides insight into the genetic basis of nitrogen uptake and assimilation and its connection to wood formation, providing interesting targets for improving nitrogen use efficiency and growth of aspen trees.
期刊介绍:
Tree Physiology promotes research in a framework of hierarchically organized systems, measuring insight by the ability to link adjacent layers: thus, investigated tree physiology phenomenon should seek mechanistic explanation in finer-scale phenomena as well as seek significance in larger scale phenomena (Passioura 1979). A phenomenon not linked downscale is merely descriptive; an observation not linked upscale, might be trivial. Physiologists often refer qualitatively to processes at finer or coarser scale than the scale of their observation, and studies formally directed at three, or even two adjacent scales are rare. To emphasize the importance of relating mechanisms to coarser scale function, Tree Physiology will highlight papers doing so particularly well as feature papers.