Dianshu Zhao, Russel T Shiga, Zhangrong Song, Runhang Shu, Lipin Loo, Adam Chun Nin Wong
{"title":"微生物组在果蝇单细胞水平上驱动脑转录组程序的年龄依赖性转变。","authors":"Dianshu Zhao, Russel T Shiga, Zhangrong Song, Runhang Shu, Lipin Loo, Adam Chun Nin Wong","doi":"10.1038/s41522-025-00781-z","DOIUrl":null,"url":null,"abstract":"<p><p>The gut microbiome plays a critical role in brain function and the brain-gut axis, yet its cellular and molecular mechanisms remain unclear. Here, we present the first comprehensive single-cell transcriptomic atlas of brain cells from adult Drosophila melanogaster raised under axenic and microbiome-associated conditions, spanning young and old ages. Profiling 34,427 cells across 101 clusters, we annotated 56 cell types and identified cell type-specific gene signatures influenced by the microbiome. Transcriptional shifts were most pronounced in old flies, with glial cells and dopaminergic neurons among the most microbiome-responsive cell types. Differentially expressed genes (DEGs) were enriched in pathways related to mitochondrial activity, energy metabolism, and Notch signaling. We also quantified age-associated changes in the gut microbiome, observing reduced Acetobacter dominance and increased microbial diversity that corresponded with heightened brain transcriptional responses. These findings illuminate the cell type-specific impacts of the microbiome on brain gene expression and lay the groundwork for understanding the molecular underpinnings of the microbiome-gut-brain axis.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"11 1","pages":"162"},"PeriodicalIF":9.2000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12344059/pdf/","citationCount":"0","resultStr":"{\"title\":\"Microbiome drives age-dependent shifts in brain transcriptomic programs at the single-cell level in Drosophila.\",\"authors\":\"Dianshu Zhao, Russel T Shiga, Zhangrong Song, Runhang Shu, Lipin Loo, Adam Chun Nin Wong\",\"doi\":\"10.1038/s41522-025-00781-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The gut microbiome plays a critical role in brain function and the brain-gut axis, yet its cellular and molecular mechanisms remain unclear. Here, we present the first comprehensive single-cell transcriptomic atlas of brain cells from adult Drosophila melanogaster raised under axenic and microbiome-associated conditions, spanning young and old ages. Profiling 34,427 cells across 101 clusters, we annotated 56 cell types and identified cell type-specific gene signatures influenced by the microbiome. Transcriptional shifts were most pronounced in old flies, with glial cells and dopaminergic neurons among the most microbiome-responsive cell types. Differentially expressed genes (DEGs) were enriched in pathways related to mitochondrial activity, energy metabolism, and Notch signaling. We also quantified age-associated changes in the gut microbiome, observing reduced Acetobacter dominance and increased microbial diversity that corresponded with heightened brain transcriptional responses. These findings illuminate the cell type-specific impacts of the microbiome on brain gene expression and lay the groundwork for understanding the molecular underpinnings of the microbiome-gut-brain axis.</p>\",\"PeriodicalId\":19370,\"journal\":{\"name\":\"npj Biofilms and Microbiomes\",\"volume\":\"11 1\",\"pages\":\"162\"},\"PeriodicalIF\":9.2000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12344059/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Biofilms and Microbiomes\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41522-025-00781-z\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Biofilms and Microbiomes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41522-025-00781-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Microbiome drives age-dependent shifts in brain transcriptomic programs at the single-cell level in Drosophila.
The gut microbiome plays a critical role in brain function and the brain-gut axis, yet its cellular and molecular mechanisms remain unclear. Here, we present the first comprehensive single-cell transcriptomic atlas of brain cells from adult Drosophila melanogaster raised under axenic and microbiome-associated conditions, spanning young and old ages. Profiling 34,427 cells across 101 clusters, we annotated 56 cell types and identified cell type-specific gene signatures influenced by the microbiome. Transcriptional shifts were most pronounced in old flies, with glial cells and dopaminergic neurons among the most microbiome-responsive cell types. Differentially expressed genes (DEGs) were enriched in pathways related to mitochondrial activity, energy metabolism, and Notch signaling. We also quantified age-associated changes in the gut microbiome, observing reduced Acetobacter dominance and increased microbial diversity that corresponded with heightened brain transcriptional responses. These findings illuminate the cell type-specific impacts of the microbiome on brain gene expression and lay the groundwork for understanding the molecular underpinnings of the microbiome-gut-brain axis.
期刊介绍:
npj Biofilms and Microbiomes is a comprehensive platform that promotes research on biofilms and microbiomes across various scientific disciplines. The journal facilitates cross-disciplinary discussions to enhance our understanding of the biology, ecology, and communal functions of biofilms, populations, and communities. It also focuses on applications in the medical, environmental, and engineering domains. The scope of the journal encompasses all aspects of the field, ranging from cell-cell communication and single cell interactions to the microbiomes of humans, animals, plants, and natural and built environments. The journal also welcomes research on the virome, phageome, mycome, and fungome. It publishes both applied science and theoretical work. As an open access and interdisciplinary journal, its primary goal is to publish significant scientific advancements in microbial biofilms and microbiomes. The journal enables discussions that span multiple disciplines and contributes to our understanding of the social behavior of microbial biofilm populations and communities, and their impact on life, human health, and the environment.