{"title":"在苯并吲哚胺部分含有磺酸和羧酸基团的吲哚菁绿衍生物在抗体肿瘤成像中的评价。","authors":"Kohei Nakajima, Hirotaka Maeta, Hideo Takakura, Koki Tsuchiya, Takayuki Ohira, Mikako Ogawa","doi":"10.1007/s11307-025-02041-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>In target-specific cancer imaging, antibodies and their fragments are conjugated with fluorescent dyes to work as targeting molecules. We have recently developed indocyanine green (ICG) derivatives with anionic functional groups at the benzoindolenine moiety. When the ICG derivatives are used for antibody-based imaging, the chemical characteristics of the conjugated dyes may influence the pharmacokinetics of the targeting molecules. Therefore, in this study, we evaluated the in vivo pharmacokinetics of IgG and Fab conjugated with the ICG derivatives bearing anionic functional groups.</p><p><strong>Procedures: </strong>A linker for conjugation was introduced into the methine chain of ICG and ICG derivatives possessing sulfonic acid (SC-Cy) or carboxylic acid (CC-Cy) groups at the benzoindolenine moiety. ICG, SC-Cy, or CC-Cy was conjugated with IgG, innate trastuzumab, and its Fab fragment. To evaluate the pharmacokinetics of these IgG-dyes and Fab-dyes, in vivo fluorescence imaging was performed in tumor-bearing mice at 0.25-96 h after intravenous administration of the imaging agents.</p><p><strong>Results: </strong>The three IgG-dyes exhibited similar pharmacokinetics and tumor accumulation profiles post injection. Thus, the differences in the dye's chemical properties had minimal influence when the ICG derivatives were conjugated with IgG. In contrast, the pharmacokinetics and tumor accumulation profiles of the Fab-dyes were remarkably different. While Fab-SC-Cy exhibited high accumulation in the kidney but no accumulation in the tumors, Fab-CC-Cy showed higher tumor accumulation. This could be attributed to the excessively high negative charge density in the benzoindolenine moiety of SC-Cy, which influenced the excretion route of the Fab fragment.</p><p><strong>Conclusions: </strong>The IgG conjugated with SC-Cy or CC-Cy dyes exhibited favorable pharmacokinetics profiles. In contrast, Fab-CC-Cy demonstrated superior performance in tumor imaging compared to Fab-SC-Cy. Our findings suggest that introducing anionic functional groups into the benzoindolenine moiety of ICG could lead to the development of near-infrared dyes that could be useful in antibody-based tumor imaging.</p>","PeriodicalId":18760,"journal":{"name":"Molecular Imaging and Biology","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of Indocyanine Green Derivatives with Sulfonic Acid and Carboxylic Acid Groups at the Benzoindolenine Moiety for Antibody-Based Tumor Imaging.\",\"authors\":\"Kohei Nakajima, Hirotaka Maeta, Hideo Takakura, Koki Tsuchiya, Takayuki Ohira, Mikako Ogawa\",\"doi\":\"10.1007/s11307-025-02041-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>In target-specific cancer imaging, antibodies and their fragments are conjugated with fluorescent dyes to work as targeting molecules. We have recently developed indocyanine green (ICG) derivatives with anionic functional groups at the benzoindolenine moiety. When the ICG derivatives are used for antibody-based imaging, the chemical characteristics of the conjugated dyes may influence the pharmacokinetics of the targeting molecules. Therefore, in this study, we evaluated the in vivo pharmacokinetics of IgG and Fab conjugated with the ICG derivatives bearing anionic functional groups.</p><p><strong>Procedures: </strong>A linker for conjugation was introduced into the methine chain of ICG and ICG derivatives possessing sulfonic acid (SC-Cy) or carboxylic acid (CC-Cy) groups at the benzoindolenine moiety. ICG, SC-Cy, or CC-Cy was conjugated with IgG, innate trastuzumab, and its Fab fragment. To evaluate the pharmacokinetics of these IgG-dyes and Fab-dyes, in vivo fluorescence imaging was performed in tumor-bearing mice at 0.25-96 h after intravenous administration of the imaging agents.</p><p><strong>Results: </strong>The three IgG-dyes exhibited similar pharmacokinetics and tumor accumulation profiles post injection. Thus, the differences in the dye's chemical properties had minimal influence when the ICG derivatives were conjugated with IgG. In contrast, the pharmacokinetics and tumor accumulation profiles of the Fab-dyes were remarkably different. While Fab-SC-Cy exhibited high accumulation in the kidney but no accumulation in the tumors, Fab-CC-Cy showed higher tumor accumulation. This could be attributed to the excessively high negative charge density in the benzoindolenine moiety of SC-Cy, which influenced the excretion route of the Fab fragment.</p><p><strong>Conclusions: </strong>The IgG conjugated with SC-Cy or CC-Cy dyes exhibited favorable pharmacokinetics profiles. In contrast, Fab-CC-Cy demonstrated superior performance in tumor imaging compared to Fab-SC-Cy. Our findings suggest that introducing anionic functional groups into the benzoindolenine moiety of ICG could lead to the development of near-infrared dyes that could be useful in antibody-based tumor imaging.</p>\",\"PeriodicalId\":18760,\"journal\":{\"name\":\"Molecular Imaging and Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Imaging and Biology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11307-025-02041-0\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Imaging and Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11307-025-02041-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Evaluation of Indocyanine Green Derivatives with Sulfonic Acid and Carboxylic Acid Groups at the Benzoindolenine Moiety for Antibody-Based Tumor Imaging.
Purpose: In target-specific cancer imaging, antibodies and their fragments are conjugated with fluorescent dyes to work as targeting molecules. We have recently developed indocyanine green (ICG) derivatives with anionic functional groups at the benzoindolenine moiety. When the ICG derivatives are used for antibody-based imaging, the chemical characteristics of the conjugated dyes may influence the pharmacokinetics of the targeting molecules. Therefore, in this study, we evaluated the in vivo pharmacokinetics of IgG and Fab conjugated with the ICG derivatives bearing anionic functional groups.
Procedures: A linker for conjugation was introduced into the methine chain of ICG and ICG derivatives possessing sulfonic acid (SC-Cy) or carboxylic acid (CC-Cy) groups at the benzoindolenine moiety. ICG, SC-Cy, or CC-Cy was conjugated with IgG, innate trastuzumab, and its Fab fragment. To evaluate the pharmacokinetics of these IgG-dyes and Fab-dyes, in vivo fluorescence imaging was performed in tumor-bearing mice at 0.25-96 h after intravenous administration of the imaging agents.
Results: The three IgG-dyes exhibited similar pharmacokinetics and tumor accumulation profiles post injection. Thus, the differences in the dye's chemical properties had minimal influence when the ICG derivatives were conjugated with IgG. In contrast, the pharmacokinetics and tumor accumulation profiles of the Fab-dyes were remarkably different. While Fab-SC-Cy exhibited high accumulation in the kidney but no accumulation in the tumors, Fab-CC-Cy showed higher tumor accumulation. This could be attributed to the excessively high negative charge density in the benzoindolenine moiety of SC-Cy, which influenced the excretion route of the Fab fragment.
Conclusions: The IgG conjugated with SC-Cy or CC-Cy dyes exhibited favorable pharmacokinetics profiles. In contrast, Fab-CC-Cy demonstrated superior performance in tumor imaging compared to Fab-SC-Cy. Our findings suggest that introducing anionic functional groups into the benzoindolenine moiety of ICG could lead to the development of near-infrared dyes that could be useful in antibody-based tumor imaging.
期刊介绍:
Molecular Imaging and Biology (MIB) invites original contributions (research articles, review articles, commentaries, etc.) on the utilization of molecular imaging (i.e., nuclear imaging, optical imaging, autoradiography and pathology, MRI, MPI, ultrasound imaging, radiomics/genomics etc.) to investigate questions related to biology and health. The objective of MIB is to provide a forum to the discovery of molecular mechanisms of disease through the use of imaging techniques. We aim to investigate the biological nature of disease in patients and establish new molecular imaging diagnostic and therapy procedures.
Some areas that are covered are:
Preclinical and clinical imaging of macromolecular targets (e.g., genes, receptors, enzymes) involved in significant biological processes.
The design, characterization, and study of new molecular imaging probes and contrast agents for the functional interrogation of macromolecular targets.
Development and evaluation of imaging systems including instrumentation, image reconstruction algorithms, image analysis, and display.
Development of molecular assay approaches leading to quantification of the biological information obtained in molecular imaging.
Study of in vivo animal models of disease for the development of new molecular diagnostics and therapeutics.
Extension of in vitro and in vivo discoveries using disease models, into well designed clinical research investigations.
Clinical molecular imaging involving clinical investigations, clinical trials and medical management or cost-effectiveness studies.