Zidan Li, George Sun, Ibrahim Al'Abri, Yihui Zhou, Nathan Crook
{"title":"大肠杆菌诱导全基因组诱变提高pDNA产量。","authors":"Zidan Li, George Sun, Ibrahim Al'Abri, Yihui Zhou, Nathan Crook","doi":"10.1186/s12934-025-02821-x","DOIUrl":null,"url":null,"abstract":"<p><p>Plasmid DNA (pDNA) is a cost-driving reagent for the production of gene therapies and DNA vaccines. Improving pDNA production in the most common production host (E. coli) has faced obstacles arising from the complex network of genes responsible for pDNA synthesis, with the specific enzyme(s) limiting pDNA yield remaining unidentified. To address this challenge, we employed an inducible genome-wide mutagenesis strategy, combined with fluorescent screening, to isolate E. coli NEB 5α strains with enhanced pDNA production. Following selection, we successfully isolated an E. coli strain (M3) with elevated plasmid copy numbers (PCNs) across multiple origin types. Specifically, we observed a 5.93-fold increase in PCN for the GFP reporter plasmid, a 1.93-fold increase for the gWiz DNA vaccine plasmid, and an 8.7-fold increase for the pAAV-CAGG-eGFP plasmid, all of which contain pUC origins. In addition, plasmids with p15A and pSC101 origins showed 1.44-fold and 1.68-fold increases in PCN, respectively. Whole-genome sequencing of the adapted strain M3 identified 85 mutations, including one in recG, which encodes an ATP-dependent DNA helicase. Replacement of the mutant recG with its wild-type counterpart in the mutant strain resulted in a 63% reduction in PCN, but the recG mutation alone was insufficient to increase PCN in the wild-type strain. These findings suggest that the recG mutation plays a synergistic role with other genomic mutations to drive PCN increases. Taken together, this study presents the development of a pDNA hyperaccumulating E. coli strain with promising applications in industrial and therapeutic pDNA production, while also offering important insights into key genes involved in pDNA production.</p>","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":"24 1","pages":"183"},"PeriodicalIF":4.9000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12344851/pdf/","citationCount":"0","resultStr":"{\"title\":\"Inducible genome-wide mutagenesis for improvement of pDNA production by E. coli.\",\"authors\":\"Zidan Li, George Sun, Ibrahim Al'Abri, Yihui Zhou, Nathan Crook\",\"doi\":\"10.1186/s12934-025-02821-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plasmid DNA (pDNA) is a cost-driving reagent for the production of gene therapies and DNA vaccines. Improving pDNA production in the most common production host (E. coli) has faced obstacles arising from the complex network of genes responsible for pDNA synthesis, with the specific enzyme(s) limiting pDNA yield remaining unidentified. To address this challenge, we employed an inducible genome-wide mutagenesis strategy, combined with fluorescent screening, to isolate E. coli NEB 5α strains with enhanced pDNA production. Following selection, we successfully isolated an E. coli strain (M3) with elevated plasmid copy numbers (PCNs) across multiple origin types. Specifically, we observed a 5.93-fold increase in PCN for the GFP reporter plasmid, a 1.93-fold increase for the gWiz DNA vaccine plasmid, and an 8.7-fold increase for the pAAV-CAGG-eGFP plasmid, all of which contain pUC origins. In addition, plasmids with p15A and pSC101 origins showed 1.44-fold and 1.68-fold increases in PCN, respectively. Whole-genome sequencing of the adapted strain M3 identified 85 mutations, including one in recG, which encodes an ATP-dependent DNA helicase. Replacement of the mutant recG with its wild-type counterpart in the mutant strain resulted in a 63% reduction in PCN, but the recG mutation alone was insufficient to increase PCN in the wild-type strain. These findings suggest that the recG mutation plays a synergistic role with other genomic mutations to drive PCN increases. Taken together, this study presents the development of a pDNA hyperaccumulating E. coli strain with promising applications in industrial and therapeutic pDNA production, while also offering important insights into key genes involved in pDNA production.</p>\",\"PeriodicalId\":18582,\"journal\":{\"name\":\"Microbial Cell Factories\",\"volume\":\"24 1\",\"pages\":\"183\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12344851/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Cell Factories\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s12934-025-02821-x\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Cell Factories","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12934-025-02821-x","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Inducible genome-wide mutagenesis for improvement of pDNA production by E. coli.
Plasmid DNA (pDNA) is a cost-driving reagent for the production of gene therapies and DNA vaccines. Improving pDNA production in the most common production host (E. coli) has faced obstacles arising from the complex network of genes responsible for pDNA synthesis, with the specific enzyme(s) limiting pDNA yield remaining unidentified. To address this challenge, we employed an inducible genome-wide mutagenesis strategy, combined with fluorescent screening, to isolate E. coli NEB 5α strains with enhanced pDNA production. Following selection, we successfully isolated an E. coli strain (M3) with elevated plasmid copy numbers (PCNs) across multiple origin types. Specifically, we observed a 5.93-fold increase in PCN for the GFP reporter plasmid, a 1.93-fold increase for the gWiz DNA vaccine plasmid, and an 8.7-fold increase for the pAAV-CAGG-eGFP plasmid, all of which contain pUC origins. In addition, plasmids with p15A and pSC101 origins showed 1.44-fold and 1.68-fold increases in PCN, respectively. Whole-genome sequencing of the adapted strain M3 identified 85 mutations, including one in recG, which encodes an ATP-dependent DNA helicase. Replacement of the mutant recG with its wild-type counterpart in the mutant strain resulted in a 63% reduction in PCN, but the recG mutation alone was insufficient to increase PCN in the wild-type strain. These findings suggest that the recG mutation plays a synergistic role with other genomic mutations to drive PCN increases. Taken together, this study presents the development of a pDNA hyperaccumulating E. coli strain with promising applications in industrial and therapeutic pDNA production, while also offering important insights into key genes involved in pDNA production.
期刊介绍:
Microbial Cell Factories is an open access peer-reviewed journal that covers any topic related to the development, use and investigation of microbial cells as producers of recombinant proteins and natural products, or as catalyzers of biological transformations of industrial interest. Microbial Cell Factories is the world leading, primary research journal fully focusing on Applied Microbiology.
The journal is divided into the following editorial sections:
-Metabolic engineering
-Synthetic biology
-Whole-cell biocatalysis
-Microbial regulations
-Recombinant protein production/bioprocessing
-Production of natural compounds
-Systems biology of cell factories
-Microbial production processes
-Cell-free systems