{"title":"适应生物系统的累积剂量反应。","authors":"Ankit Gupta, Eduardo Sontag","doi":"10.1098/rsif.2024.0877","DOIUrl":null,"url":null,"abstract":"<p><p>Physiological adaptation is a fundamental property of biological systems across all levels of organization, ensuring survival and proper function. Adaptation is typically formulated as an asymptotic property of the <i>dose response (DR</i>), defined as the level of a response variable with respect to an input parameter. In pharmacology, the input could be a drug concentration; in immunology, it might correspond to an antigen level. In contrast to the DR, this paper develops the concept of a transient, finite-time, cumulative dose response (cDR)<i>,</i> which is obtained by integrating the response variable over a fixed time interval and viewing that integral-area under the curve-as a function of the input parameter. This study is motivated by experimental observations of cytokine accumulation under T-cell stimulation, which exhibit a non-monotonic cDR. It is known from the systems biology literature that only two types of network motifs, incoherent feedforward loops and negative integral feedback (IFB) mechanisms, can generate adaptation. Three paradigmatic such motifs-two types of incoherent loops and one integral feedback-have been the focus of much study. Surprisingly, it is shown here that these two incoherent feedforward loop motifs-despite their capacity for non-monotonic DR-always yield a monotonic cDR, and are therefore inconsistent with these experimental data. On the other hand, this work reveals that the IFB motif is indeed capable of producing a non-monotonic cDR, and is thus consistent with these data.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"22 229","pages":"20240877"},"PeriodicalIF":3.5000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12343139/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cumulative dose responses for adapting biological systems.\",\"authors\":\"Ankit Gupta, Eduardo Sontag\",\"doi\":\"10.1098/rsif.2024.0877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Physiological adaptation is a fundamental property of biological systems across all levels of organization, ensuring survival and proper function. Adaptation is typically formulated as an asymptotic property of the <i>dose response (DR</i>), defined as the level of a response variable with respect to an input parameter. In pharmacology, the input could be a drug concentration; in immunology, it might correspond to an antigen level. In contrast to the DR, this paper develops the concept of a transient, finite-time, cumulative dose response (cDR)<i>,</i> which is obtained by integrating the response variable over a fixed time interval and viewing that integral-area under the curve-as a function of the input parameter. This study is motivated by experimental observations of cytokine accumulation under T-cell stimulation, which exhibit a non-monotonic cDR. It is known from the systems biology literature that only two types of network motifs, incoherent feedforward loops and negative integral feedback (IFB) mechanisms, can generate adaptation. Three paradigmatic such motifs-two types of incoherent loops and one integral feedback-have been the focus of much study. Surprisingly, it is shown here that these two incoherent feedforward loop motifs-despite their capacity for non-monotonic DR-always yield a monotonic cDR, and are therefore inconsistent with these experimental data. On the other hand, this work reveals that the IFB motif is indeed capable of producing a non-monotonic cDR, and is thus consistent with these data.</p>\",\"PeriodicalId\":17488,\"journal\":{\"name\":\"Journal of The Royal Society Interface\",\"volume\":\"22 229\",\"pages\":\"20240877\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12343139/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Royal Society Interface\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsif.2024.0877\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2024.0877","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Cumulative dose responses for adapting biological systems.
Physiological adaptation is a fundamental property of biological systems across all levels of organization, ensuring survival and proper function. Adaptation is typically formulated as an asymptotic property of the dose response (DR), defined as the level of a response variable with respect to an input parameter. In pharmacology, the input could be a drug concentration; in immunology, it might correspond to an antigen level. In contrast to the DR, this paper develops the concept of a transient, finite-time, cumulative dose response (cDR), which is obtained by integrating the response variable over a fixed time interval and viewing that integral-area under the curve-as a function of the input parameter. This study is motivated by experimental observations of cytokine accumulation under T-cell stimulation, which exhibit a non-monotonic cDR. It is known from the systems biology literature that only two types of network motifs, incoherent feedforward loops and negative integral feedback (IFB) mechanisms, can generate adaptation. Three paradigmatic such motifs-two types of incoherent loops and one integral feedback-have been the focus of much study. Surprisingly, it is shown here that these two incoherent feedforward loop motifs-despite their capacity for non-monotonic DR-always yield a monotonic cDR, and are therefore inconsistent with these experimental data. On the other hand, this work reveals that the IFB motif is indeed capable of producing a non-monotonic cDR, and is thus consistent with these data.
期刊介绍:
J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.