{"title":"基底选择性COX-2抑制IMMA通过内源性大麻素调节和神经炎症抑制减轻创伤后头痛。","authors":"Jie Wen, Mikiei Tanaka, Yumin Zhang","doi":"10.1186/s10194-025-02116-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Posttraumatic headache (PTH) is a common and debilitating consequence of traumatic brain injury (TBI), characterized by neuroinflammation and pain hypersensitivity. Current treatments are limited, and novel therapeutics are needed. Indomethacin morpholinamide (IMMA), a substrate-selective cyclooxygenase-2 (COX-2) inhibitor, enhances endocannabinoid signaling without disrupting prostaglandin homeostasis and may offer a mechanistically distinct approach to managing PTH.</p><p><strong>Methods: </strong>Male C57BL/6J mice were subjected to repetitive mild TBI (rmTBI) using the Closed-Head Impact Model of Engineered Rotational Acceleration (CHIMERA) and treated with IMMA (10 mg/kg, i.p.) daily for 7 days post-injury. Mechanical allodynia was assessed using von Frey stimulation of the periorbital region. Neuroinflammation was evaluated through immunohistochemistry in the trigeminal ganglion (TG) and trigeminal nucleus caudalis (TNC). Endocannabinoid and prostaglandin levels were quantified by mass spectrometry and enzyme immunoassay, respectively.</p><p><strong>Results: </strong>IMMA significantly reduced rmTBI-induced periorbital allodynia, microglial and astrocyte activation, and CGRP expression in the TG and TNC. It also preserved meningeal mast cell integrity and elevated cortical anandamide (AEA) levels without altering prostaglandin E₂ (PGE₂) production, supporting a mechanism that enhances cannabinoid signaling while sparing COX-2-mediated prostaglandin synthesis.</p><p><strong>Conclusion: </strong>IMMA effectively attenuates neuroinflammation and pain hypersensitivity in the acute phase of PTH through a distinct mechanism that preserves endocannabinoid tone without suppressing physiological prostaglandins. While these results highlight its promise as a novel therapeutic strategy, further studies are warranted to determine its efficacy during the chronic phase of PTH and across anatomically targeted regions.</p>","PeriodicalId":16013,"journal":{"name":"Journal of Headache and Pain","volume":"26 1","pages":"183"},"PeriodicalIF":7.9000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12341237/pdf/","citationCount":"0","resultStr":"{\"title\":\"Substrate-selective COX-2 inhibition by IMMA attenuates posttraumatic headache via endocannabinoid modulation and neuroinflammatory suppression.\",\"authors\":\"Jie Wen, Mikiei Tanaka, Yumin Zhang\",\"doi\":\"10.1186/s10194-025-02116-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Posttraumatic headache (PTH) is a common and debilitating consequence of traumatic brain injury (TBI), characterized by neuroinflammation and pain hypersensitivity. Current treatments are limited, and novel therapeutics are needed. Indomethacin morpholinamide (IMMA), a substrate-selective cyclooxygenase-2 (COX-2) inhibitor, enhances endocannabinoid signaling without disrupting prostaglandin homeostasis and may offer a mechanistically distinct approach to managing PTH.</p><p><strong>Methods: </strong>Male C57BL/6J mice were subjected to repetitive mild TBI (rmTBI) using the Closed-Head Impact Model of Engineered Rotational Acceleration (CHIMERA) and treated with IMMA (10 mg/kg, i.p.) daily for 7 days post-injury. Mechanical allodynia was assessed using von Frey stimulation of the periorbital region. Neuroinflammation was evaluated through immunohistochemistry in the trigeminal ganglion (TG) and trigeminal nucleus caudalis (TNC). Endocannabinoid and prostaglandin levels were quantified by mass spectrometry and enzyme immunoassay, respectively.</p><p><strong>Results: </strong>IMMA significantly reduced rmTBI-induced periorbital allodynia, microglial and astrocyte activation, and CGRP expression in the TG and TNC. It also preserved meningeal mast cell integrity and elevated cortical anandamide (AEA) levels without altering prostaglandin E₂ (PGE₂) production, supporting a mechanism that enhances cannabinoid signaling while sparing COX-2-mediated prostaglandin synthesis.</p><p><strong>Conclusion: </strong>IMMA effectively attenuates neuroinflammation and pain hypersensitivity in the acute phase of PTH through a distinct mechanism that preserves endocannabinoid tone without suppressing physiological prostaglandins. While these results highlight its promise as a novel therapeutic strategy, further studies are warranted to determine its efficacy during the chronic phase of PTH and across anatomically targeted regions.</p>\",\"PeriodicalId\":16013,\"journal\":{\"name\":\"Journal of Headache and Pain\",\"volume\":\"26 1\",\"pages\":\"183\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12341237/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Headache and Pain\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s10194-025-02116-x\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Headache and Pain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s10194-025-02116-x","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Substrate-selective COX-2 inhibition by IMMA attenuates posttraumatic headache via endocannabinoid modulation and neuroinflammatory suppression.
Background: Posttraumatic headache (PTH) is a common and debilitating consequence of traumatic brain injury (TBI), characterized by neuroinflammation and pain hypersensitivity. Current treatments are limited, and novel therapeutics are needed. Indomethacin morpholinamide (IMMA), a substrate-selective cyclooxygenase-2 (COX-2) inhibitor, enhances endocannabinoid signaling without disrupting prostaglandin homeostasis and may offer a mechanistically distinct approach to managing PTH.
Methods: Male C57BL/6J mice were subjected to repetitive mild TBI (rmTBI) using the Closed-Head Impact Model of Engineered Rotational Acceleration (CHIMERA) and treated with IMMA (10 mg/kg, i.p.) daily for 7 days post-injury. Mechanical allodynia was assessed using von Frey stimulation of the periorbital region. Neuroinflammation was evaluated through immunohistochemistry in the trigeminal ganglion (TG) and trigeminal nucleus caudalis (TNC). Endocannabinoid and prostaglandin levels were quantified by mass spectrometry and enzyme immunoassay, respectively.
Results: IMMA significantly reduced rmTBI-induced periorbital allodynia, microglial and astrocyte activation, and CGRP expression in the TG and TNC. It also preserved meningeal mast cell integrity and elevated cortical anandamide (AEA) levels without altering prostaglandin E₂ (PGE₂) production, supporting a mechanism that enhances cannabinoid signaling while sparing COX-2-mediated prostaglandin synthesis.
Conclusion: IMMA effectively attenuates neuroinflammation and pain hypersensitivity in the acute phase of PTH through a distinct mechanism that preserves endocannabinoid tone without suppressing physiological prostaglandins. While these results highlight its promise as a novel therapeutic strategy, further studies are warranted to determine its efficacy during the chronic phase of PTH and across anatomically targeted regions.
期刊介绍:
The Journal of Headache and Pain, a peer-reviewed open-access journal published under the BMC brand, a part of Springer Nature, is dedicated to researchers engaged in all facets of headache and related pain syndromes. It encompasses epidemiology, public health, basic science, translational medicine, clinical trials, and real-world data.
With a multidisciplinary approach, The Journal of Headache and Pain addresses headache medicine and related pain syndromes across all medical disciplines. It particularly encourages submissions in clinical, translational, and basic science fields, focusing on pain management, genetics, neurology, and internal medicine. The journal publishes research articles, reviews, letters to the Editor, as well as consensus articles and guidelines, aimed at promoting best practices in managing patients with headaches and related pain.