唾液白介素-1β在牙周炎分级中的人工智能模型分类成功:一项横断面观察研究。

IF 2.6 3区 医学 Q2 DENTISTRY, ORAL SURGERY & MEDICINE
Journal of Applied Oral Science Pub Date : 2025-08-08 eCollection Date: 2025-01-01 DOI:10.1590/1678-7757-2024-0580
Erensu Uzar, Ihsan Pence, Melike Siseci Cesmeli, Zuhal Yetkin Ay
{"title":"唾液白介素-1β在牙周炎分级中的人工智能模型分类成功:一项横断面观察研究。","authors":"Erensu Uzar, Ihsan Pence, Melike Siseci Cesmeli, Zuhal Yetkin Ay","doi":"10.1590/1678-7757-2024-0580","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Finding certain biomarkers and threshold values of periodontitis and incorporating them into classifications can further highlight its impact on systemic health. This cross-sectional observational study aims to evaluate the efficacy of some biomarkers in grading periodontitis using artificial intelligence (AI) models.</p><p><strong>Methodology: </strong>AI models were developed to automatically classify periodontal status (N=240) and grades in periodontitis patients (n=120) using Python based on sociodemographic, anthropometric, clinical, radiological, and biochemical attributes. A total of 35 serum levels of whole blood attributes (white blood cell (WBC), platelet, erythrocyte, neutrophil, lymphocyte counts, and mean platelet volume), lipid profile [triglycerides; high-, low-, and very low-density lipoproteins (HDL, LDL, VLDL), and total cholesterol levels], salivary and serum interleukin (IL)-1β and matrix metalloproteinase (MMP)-8 levels), and 11 other attributes were used in the current classification.</p><p><strong>Results: </strong>In total, 23 out of 46 attributes achieved a 0.967 classification accuracy, whereas nine, a 0.858 classification accuracy. Attributes such as WBC, serum IL- 1β, triglyceride/HDL ratio, neutrophil/lymphocyte ratio, and HDL were instrumental in periodontal status classification. HDL, LDL, neutrophil/lymphocyte ratio, total cholesterol, salivary IL-1β, and MMP-8 were key attributes in grading.</p><p><strong>Conclusions: </strong>AI models showed significant classification accuracy, particularly with serum and salivary IL-1β levels and other blood parameters, underscoring the potential of these biomarkers, which could be integrated into the current classification.</p>","PeriodicalId":15133,"journal":{"name":"Journal of Applied Oral Science","volume":"33 ","pages":"e20240580"},"PeriodicalIF":2.6000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification success of salivary interleukin-1β in periodontitis grading with artificial intelligence models: a cross-sectional observational study.\",\"authors\":\"Erensu Uzar, Ihsan Pence, Melike Siseci Cesmeli, Zuhal Yetkin Ay\",\"doi\":\"10.1590/1678-7757-2024-0580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Finding certain biomarkers and threshold values of periodontitis and incorporating them into classifications can further highlight its impact on systemic health. This cross-sectional observational study aims to evaluate the efficacy of some biomarkers in grading periodontitis using artificial intelligence (AI) models.</p><p><strong>Methodology: </strong>AI models were developed to automatically classify periodontal status (N=240) and grades in periodontitis patients (n=120) using Python based on sociodemographic, anthropometric, clinical, radiological, and biochemical attributes. A total of 35 serum levels of whole blood attributes (white blood cell (WBC), platelet, erythrocyte, neutrophil, lymphocyte counts, and mean platelet volume), lipid profile [triglycerides; high-, low-, and very low-density lipoproteins (HDL, LDL, VLDL), and total cholesterol levels], salivary and serum interleukin (IL)-1β and matrix metalloproteinase (MMP)-8 levels), and 11 other attributes were used in the current classification.</p><p><strong>Results: </strong>In total, 23 out of 46 attributes achieved a 0.967 classification accuracy, whereas nine, a 0.858 classification accuracy. Attributes such as WBC, serum IL- 1β, triglyceride/HDL ratio, neutrophil/lymphocyte ratio, and HDL were instrumental in periodontal status classification. HDL, LDL, neutrophil/lymphocyte ratio, total cholesterol, salivary IL-1β, and MMP-8 were key attributes in grading.</p><p><strong>Conclusions: </strong>AI models showed significant classification accuracy, particularly with serum and salivary IL-1β levels and other blood parameters, underscoring the potential of these biomarkers, which could be integrated into the current classification.</p>\",\"PeriodicalId\":15133,\"journal\":{\"name\":\"Journal of Applied Oral Science\",\"volume\":\"33 \",\"pages\":\"e20240580\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Oral Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1590/1678-7757-2024-0580\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Oral Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1590/1678-7757-2024-0580","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

摘要

目的:发现牙周炎的某些生物标志物和阈值,并将其纳入分类,可以进一步突出其对全身健康的影响。本横断面观察性研究旨在利用人工智能(AI)模型评估一些生物标志物在牙周炎分级中的功效。方法:开发人工智能模型,使用Python根据社会人口学、人体测量学、临床、放射学和生化属性,自动对牙周炎患者(N= 120)的牙周状态(N=240)和等级进行分类。总共35项血清全血指标(白细胞(WBC)、血小板、红细胞、中性粒细胞、淋巴细胞计数和平均血小板体积)、脂质谱(甘油三酯;高、低、极低密度脂蛋白(HDL、LDL、VLDL)和总胆固醇水平),唾液和血清白细胞介素(IL)-1β和基质金属蛋白酶(MMP)-8水平,以及其他11个属性被用于当前的分类。结果:46个属性中,23个属性的分类准确率为0.967,9个属性的分类准确率为0.858。WBC、血清IL- 1β、甘油三酯/高密度脂蛋白比率、中性粒细胞/淋巴细胞比率和高密度脂蛋白等指标是牙周状态分类的重要指标。HDL、LDL、中性粒细胞/淋巴细胞比值、总胆固醇、唾液IL-1β和MMP-8是评分的关键指标。结论:人工智能模型显示出显著的分类准确性,特别是血清和唾液IL-1β水平和其他血液参数,强调了这些生物标志物的潜力,可以整合到当前的分类中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification success of salivary interleukin-1β in periodontitis grading with artificial intelligence models: a cross-sectional observational study.

Objectives: Finding certain biomarkers and threshold values of periodontitis and incorporating them into classifications can further highlight its impact on systemic health. This cross-sectional observational study aims to evaluate the efficacy of some biomarkers in grading periodontitis using artificial intelligence (AI) models.

Methodology: AI models were developed to automatically classify periodontal status (N=240) and grades in periodontitis patients (n=120) using Python based on sociodemographic, anthropometric, clinical, radiological, and biochemical attributes. A total of 35 serum levels of whole blood attributes (white blood cell (WBC), platelet, erythrocyte, neutrophil, lymphocyte counts, and mean platelet volume), lipid profile [triglycerides; high-, low-, and very low-density lipoproteins (HDL, LDL, VLDL), and total cholesterol levels], salivary and serum interleukin (IL)-1β and matrix metalloproteinase (MMP)-8 levels), and 11 other attributes were used in the current classification.

Results: In total, 23 out of 46 attributes achieved a 0.967 classification accuracy, whereas nine, a 0.858 classification accuracy. Attributes such as WBC, serum IL- 1β, triglyceride/HDL ratio, neutrophil/lymphocyte ratio, and HDL were instrumental in periodontal status classification. HDL, LDL, neutrophil/lymphocyte ratio, total cholesterol, salivary IL-1β, and MMP-8 were key attributes in grading.

Conclusions: AI models showed significant classification accuracy, particularly with serum and salivary IL-1β levels and other blood parameters, underscoring the potential of these biomarkers, which could be integrated into the current classification.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Oral Science
Journal of Applied Oral Science 医学-牙科与口腔外科
CiteScore
4.80
自引率
3.70%
发文量
46
审稿时长
4-8 weeks
期刊介绍: The Journal of Applied Oral Science is committed in publishing the scientific and technologic advances achieved by the dental community, according to the quality indicators and peer reviewed material, with the objective of assuring its acceptability at the local, regional, national and international levels. The primary goal of The Journal of Applied Oral Science is to publish the outcomes of original investigations as well as invited case reports and invited reviews in the field of Dentistry and related areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信