Jimin Hu, Duc T Huynh, Denise E Dunn, Jianli Wu, Cindy Manriquez-Rodriguez, Qianyi E Zhang, Gabrielle A Hirschkorn, Tetsuya Hirata, George R Georgiou, Samuel A Myers, Scott R Floyd, Jen-Tsan Chi, Michael Boyce
{"title":"o - glcn酰化对KLHL3/WNK通路功能调控的证据。","authors":"Jimin Hu, Duc T Huynh, Denise E Dunn, Jianli Wu, Cindy Manriquez-Rodriguez, Qianyi E Zhang, Gabrielle A Hirschkorn, Tetsuya Hirata, George R Georgiou, Samuel A Myers, Scott R Floyd, Jen-Tsan Chi, Michael Boyce","doi":"10.1093/glycob/cwaf046","DOIUrl":null,"url":null,"abstract":"<p><p>The 42-member Kelch-like (KLHL) protein family are adaptors for ubiquitin E3 ligase complexes, governing the stability of a wide range of substrates. KLHL proteins are critical for maintaining proteostasis in a variety of tissues and are mutated in human diseases, including cancer, neurodegeneration, and familial hyperkalemic hypertension. However, the regulation of KLHL proteins remains incompletely understood. Previously, we reported that two KLHL family members, KEAP1 and gigaxonin, are regulated by O-linked β-N-acetylglucosamine (O-GlcNAc), an intracellular form of glycosylation. Interestingly, some ubiquitination targets of KEAP1 and gigaxonin are themselves also O-GlcNAcylated, suggesting that multi-level control by this post-translational modification may influence many KLHL pathways. To test this hypothesis, we examined KLHL3, which ubiquitinates with-no-lysine (WNK) kinases to modulate downstream ion channel activity. Our biochemical and glycoproteomic data demonstrate that human KLHL3 and all four WNK kinases (WNK1-4) are O-GlcNAcylated. Moreover, our results suggest that O-GlcNAcylation affects WNK4 function in both osmolarity control and ferroptosis, with potential implications ranging from blood pressure regulation to neuronal health and survival. This work demonstrates the functional regulation of the KLHL3/WNK axis by O-GlcNAcylation and supports a broader model of O-GlcNAc serving as a general regulator of KLHL signaling and proteostasis.</p>","PeriodicalId":12766,"journal":{"name":"Glycobiology","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12360702/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evidence for functional regulation of the KLHL3/WNK pathway by O-GlcNAcylation.\",\"authors\":\"Jimin Hu, Duc T Huynh, Denise E Dunn, Jianli Wu, Cindy Manriquez-Rodriguez, Qianyi E Zhang, Gabrielle A Hirschkorn, Tetsuya Hirata, George R Georgiou, Samuel A Myers, Scott R Floyd, Jen-Tsan Chi, Michael Boyce\",\"doi\":\"10.1093/glycob/cwaf046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The 42-member Kelch-like (KLHL) protein family are adaptors for ubiquitin E3 ligase complexes, governing the stability of a wide range of substrates. KLHL proteins are critical for maintaining proteostasis in a variety of tissues and are mutated in human diseases, including cancer, neurodegeneration, and familial hyperkalemic hypertension. However, the regulation of KLHL proteins remains incompletely understood. Previously, we reported that two KLHL family members, KEAP1 and gigaxonin, are regulated by O-linked β-N-acetylglucosamine (O-GlcNAc), an intracellular form of glycosylation. Interestingly, some ubiquitination targets of KEAP1 and gigaxonin are themselves also O-GlcNAcylated, suggesting that multi-level control by this post-translational modification may influence many KLHL pathways. To test this hypothesis, we examined KLHL3, which ubiquitinates with-no-lysine (WNK) kinases to modulate downstream ion channel activity. Our biochemical and glycoproteomic data demonstrate that human KLHL3 and all four WNK kinases (WNK1-4) are O-GlcNAcylated. Moreover, our results suggest that O-GlcNAcylation affects WNK4 function in both osmolarity control and ferroptosis, with potential implications ranging from blood pressure regulation to neuronal health and survival. This work demonstrates the functional regulation of the KLHL3/WNK axis by O-GlcNAcylation and supports a broader model of O-GlcNAc serving as a general regulator of KLHL signaling and proteostasis.</p>\",\"PeriodicalId\":12766,\"journal\":{\"name\":\"Glycobiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12360702/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Glycobiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/glycob/cwaf046\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glycobiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/glycob/cwaf046","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Evidence for functional regulation of the KLHL3/WNK pathway by O-GlcNAcylation.
The 42-member Kelch-like (KLHL) protein family are adaptors for ubiquitin E3 ligase complexes, governing the stability of a wide range of substrates. KLHL proteins are critical for maintaining proteostasis in a variety of tissues and are mutated in human diseases, including cancer, neurodegeneration, and familial hyperkalemic hypertension. However, the regulation of KLHL proteins remains incompletely understood. Previously, we reported that two KLHL family members, KEAP1 and gigaxonin, are regulated by O-linked β-N-acetylglucosamine (O-GlcNAc), an intracellular form of glycosylation. Interestingly, some ubiquitination targets of KEAP1 and gigaxonin are themselves also O-GlcNAcylated, suggesting that multi-level control by this post-translational modification may influence many KLHL pathways. To test this hypothesis, we examined KLHL3, which ubiquitinates with-no-lysine (WNK) kinases to modulate downstream ion channel activity. Our biochemical and glycoproteomic data demonstrate that human KLHL3 and all four WNK kinases (WNK1-4) are O-GlcNAcylated. Moreover, our results suggest that O-GlcNAcylation affects WNK4 function in both osmolarity control and ferroptosis, with potential implications ranging from blood pressure regulation to neuronal health and survival. This work demonstrates the functional regulation of the KLHL3/WNK axis by O-GlcNAcylation and supports a broader model of O-GlcNAc serving as a general regulator of KLHL signaling and proteostasis.
期刊介绍:
Established as the leading journal in the field, Glycobiology provides a unique forum dedicated to research into the biological functions of glycans, including glycoproteins, glycolipids, proteoglycans and free oligosaccharides, and on proteins that specifically interact with glycans (including lectins, glycosyltransferases, and glycosidases).
Glycobiology is essential reading for researchers in biomedicine, basic science, and the biotechnology industries. By providing a single forum, the journal aims to improve communication between glycobiologists working in different disciplines and to increase the overall visibility of the field.