Revathi Reddy, Eric Carpenter, Anne Halpin, Mirat Sojitra, Chuanhao Peng, Guilherme Meira Lima, Xiaochao Xue, Kejia Yan, Jean Pearcy, Maria Ellis, Bruce Motyka, Todd L Lowary, Lori West, Ratmir Derda
{"title":"多重液体聚糖阵列(LiGA)用于糖结合抗体血清学检测的评价。","authors":"Revathi Reddy, Eric Carpenter, Anne Halpin, Mirat Sojitra, Chuanhao Peng, Guilherme Meira Lima, Xiaochao Xue, Kejia Yan, Jean Pearcy, Maria Ellis, Bruce Motyka, Todd L Lowary, Lori West, Ratmir Derda","doi":"10.1093/glycob/cwaf042","DOIUrl":null,"url":null,"abstract":"<p><p>We test the performance of the multiplexed liquid glycan array (LiGA) technology in serological assays. Specifically, we use LiGA to detect ABO blood group antibodies in human serum. This LiGA, which we name ABO-LiGA, contains ABO blood group trisaccharide glycans with an ethylazido aglycone conjugated to groups of ten multi-barcoded M13 particles carrying dibenzocyclooctyne (DBCO) on p8 proteins. ELISA clonal binding assays to anti-A/B antibodies confirmed the functional performance of ABO-clones and aligned with next-generation sequencing (NGS) of the mixed clones. Multiple DNA-barcoded technical replicates in LiGA allow for quantification of reproducibility and robustness as determined by the Z'-score using NGS. We then tested ABO-LiGA for specific detection of IgG and IgM anti-A and anti-B IgG and IgM antibodies in human serum samples. Comparison of antibody binding responses in sera from 31 healthy donors to ABO-LiGA with an ABO-Luminex-based method revealed consistent responses to LiGA-ABO but also minor deficiencies of ABO-LiGA such as low robustness of the current assay format and a limited ability to detect low intensity antibody responses. Some results point to undesired interactions of serum antibodies with small-footprint glycans conjugated to phage via the bulky DBCO moiety. This report illuminates the path for future development of LiGA-based serological assays and suggests the need to develop alternative methods for conjugating glycans to phage to avoid liabilities of the hydrophobic DBCO moiety.</p>","PeriodicalId":12766,"journal":{"name":"Glycobiology","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of Multiplexed Liquid Glycan Array (LiGA) for Serological Detection of Glycanbinding Antibodies.\",\"authors\":\"Revathi Reddy, Eric Carpenter, Anne Halpin, Mirat Sojitra, Chuanhao Peng, Guilherme Meira Lima, Xiaochao Xue, Kejia Yan, Jean Pearcy, Maria Ellis, Bruce Motyka, Todd L Lowary, Lori West, Ratmir Derda\",\"doi\":\"10.1093/glycob/cwaf042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We test the performance of the multiplexed liquid glycan array (LiGA) technology in serological assays. Specifically, we use LiGA to detect ABO blood group antibodies in human serum. This LiGA, which we name ABO-LiGA, contains ABO blood group trisaccharide glycans with an ethylazido aglycone conjugated to groups of ten multi-barcoded M13 particles carrying dibenzocyclooctyne (DBCO) on p8 proteins. ELISA clonal binding assays to anti-A/B antibodies confirmed the functional performance of ABO-clones and aligned with next-generation sequencing (NGS) of the mixed clones. Multiple DNA-barcoded technical replicates in LiGA allow for quantification of reproducibility and robustness as determined by the Z'-score using NGS. We then tested ABO-LiGA for specific detection of IgG and IgM anti-A and anti-B IgG and IgM antibodies in human serum samples. Comparison of antibody binding responses in sera from 31 healthy donors to ABO-LiGA with an ABO-Luminex-based method revealed consistent responses to LiGA-ABO but also minor deficiencies of ABO-LiGA such as low robustness of the current assay format and a limited ability to detect low intensity antibody responses. Some results point to undesired interactions of serum antibodies with small-footprint glycans conjugated to phage via the bulky DBCO moiety. This report illuminates the path for future development of LiGA-based serological assays and suggests the need to develop alternative methods for conjugating glycans to phage to avoid liabilities of the hydrophobic DBCO moiety.</p>\",\"PeriodicalId\":12766,\"journal\":{\"name\":\"Glycobiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Glycobiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/glycob/cwaf042\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glycobiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/glycob/cwaf042","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Evaluation of Multiplexed Liquid Glycan Array (LiGA) for Serological Detection of Glycanbinding Antibodies.
We test the performance of the multiplexed liquid glycan array (LiGA) technology in serological assays. Specifically, we use LiGA to detect ABO blood group antibodies in human serum. This LiGA, which we name ABO-LiGA, contains ABO blood group trisaccharide glycans with an ethylazido aglycone conjugated to groups of ten multi-barcoded M13 particles carrying dibenzocyclooctyne (DBCO) on p8 proteins. ELISA clonal binding assays to anti-A/B antibodies confirmed the functional performance of ABO-clones and aligned with next-generation sequencing (NGS) of the mixed clones. Multiple DNA-barcoded technical replicates in LiGA allow for quantification of reproducibility and robustness as determined by the Z'-score using NGS. We then tested ABO-LiGA for specific detection of IgG and IgM anti-A and anti-B IgG and IgM antibodies in human serum samples. Comparison of antibody binding responses in sera from 31 healthy donors to ABO-LiGA with an ABO-Luminex-based method revealed consistent responses to LiGA-ABO but also minor deficiencies of ABO-LiGA such as low robustness of the current assay format and a limited ability to detect low intensity antibody responses. Some results point to undesired interactions of serum antibodies with small-footprint glycans conjugated to phage via the bulky DBCO moiety. This report illuminates the path for future development of LiGA-based serological assays and suggests the need to develop alternative methods for conjugating glycans to phage to avoid liabilities of the hydrophobic DBCO moiety.
期刊介绍:
Established as the leading journal in the field, Glycobiology provides a unique forum dedicated to research into the biological functions of glycans, including glycoproteins, glycolipids, proteoglycans and free oligosaccharides, and on proteins that specifically interact with glycans (including lectins, glycosyltransferases, and glycosidases).
Glycobiology is essential reading for researchers in biomedicine, basic science, and the biotechnology industries. By providing a single forum, the journal aims to improve communication between glycobiologists working in different disciplines and to increase the overall visibility of the field.